
Marc Aurel Kastner

Supervisor Michael Stengel

Referee Prof. Dr. Ing. Marcus Magnor

Co-Referee Prof. Dr. Ing. Ina Schaefer

Video Streaming for Foveated
High-resolution Rendering

Master Thesis

February 24, 2016

Computer Graphics Lab, TU Braunschweig



ii



Eidesstattliche Erklärung

Hiermit erkläre ich an Eides statt, dass ich die vorliegende Arbeit selbständig
verfasst und keine anderen als die angegebenen Hilfsmittel verwendet habe.

Braunschweig, 24. Februar 2016

Marc Aurel Kastner



iv



Zusammenfassung

Applikationen für Virtual Reality nutzen häufig Displays, die nah am Auge
des Benutzers abgespielt werden. Um eine hohe Immersion zu erschaffen
müssen Videodaten in einem höchstmöglichen Detailgrad übertragen werden.
Hierbei kommt es jedoch häufig zu Problemen, da hochaufgelöste Videodaten
meist einen Engpass in der Bandbreite zwischen Grafikkarte und Display
darstellen. Um einen solchen Engpass zu vermeiden, müssen die Videodaten
optimiert und im Umfang reduziert übertragen werden.

Diese Abschlussarbeit entwickelt ein Verfahren zum Darstellen von hoch
aufgelösten Videodaten unter Verwendung eines fovealen Ansatzes. Um die
Sehschärfe eines menschlichen Auges zu simulieren, sollen sich Videodaten
dynamisch in der Auflösung anpassen können. Hierfür ist es notwendig, ein
Datenformat zu entwickeln, das dynamisch Regionen in unterschiedlichen
Qualitätsstufen auslesen kann. Danach wählt ein Auswahlverfahren auf Basis
von fundierten Kenntnissen über Sehschärfe eine optimale Verteilung der Au-
flösungen für unterschiedliche Bildbereiche aus. Hiermit kann ein Großteil der
Rohdaten eingespart werden, da beispielsweise für Objekte im Augenwinkel
nur grobe Details übertragen werden müssen. Dies verringert die Bandbreite
und verhindert Engpässe in der Übertragung. Um dies umzusetzen wurde ein
geeigneter Algorithmus entworfen und implementiert. Die Implementationen
wurden ausführlich getestet im Hinblick auf Geschwindigkeit, Robustheit und
die Wahrnehmung der Benutzer. In der abschließenden Diskussion wird auf
offene Herausforderungen und Potential für zukünftige Arbeiten eingegangen.



vi



Abstract

Virtual reality applications often display video data close to the eyes. A
high resolution increases immersion and realism. This comes with drawbacks
in terms of bandwidth requirements not sustainable by current hardware,
limiting the choice of video resolutions. In order to decrease bandwidth
and computation requirements, the transferred data of high resolution video
streams needs to be restricted.

This thesis develops an approach for high resolution video streaming
utilizing foveated imaging data. To be able to load raw video data in dynamic
resolution levels simulating visual acuity, a sufficient data format capable of
loading video regions in different quality settings is developed. Furthermore,
an algorithm is designed to efficiently incorporate visual acuity to select a set
of video data ideally suited for the users’ field of view. This way, the amount
of raw data streamed to the graphics unit is reduced, as only a small region
is displayed in the maximum resolution. This approach is implemented and
tested for wide-screen and panoramic video material. The implementations
are evaluated in terms of performance, robustness and the users’ perception.
A discussion rounds up the results and limitations with an analysis of open
problems for future work.



viii



Contents

1 Introduction 1
1.1 Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 About this thesis . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 Related work 5
2.1 Virtual reality . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.1 Simulation sickness . . . . . . . . . . . . . . . . . . . . 6
2.2 Pupil detection . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.3 Human visual system . . . . . . . . . . . . . . . . . . . . . . . 8
2.4 High Resolution Textures . . . . . . . . . . . . . . . . . . . . 12

2.4.1 Ray tracing-based approaches . . . . . . . . . . . . . . 13

3 Method 15
3.1 Factoring in acuity . . . . . . . . . . . . . . . . . . . . . . . . 16

3.1.1 Sampling-based approaches . . . . . . . . . . . . . . . 17
3.1.2 Grid-based approaches . . . . . . . . . . . . . . . . . . 18
3.1.3 Saliency-based approaches . . . . . . . . . . . . . . . . 19

3.2 Video pre-processing . . . . . . . . . . . . . . . . . . . . . . . 20
3.3 Video handling . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.3.1 Reconstruct video frames . . . . . . . . . . . . . . . . 23
3.3.2 Handling 360-degree panoramic videos . . . . . . . . . 23

4 Implementation 27
4.1 Framework for wide-screen videos . . . . . . . . . . . . . . . . 27

4.1.1 Acuity by sampling . . . . . . . . . . . . . . . . . . . . 28
4.1.2 Data pre-processing . . . . . . . . . . . . . . . . . . . 30
4.1.3 Texture loading . . . . . . . . . . . . . . . . . . . . . . 30

4.2 Framework for 360-degree panoramic videos . . . . . . . . . . 32
4.2.1 Data pre-processing . . . . . . . . . . . . . . . . . . . 33
4.2.2 Acuity function . . . . . . . . . . . . . . . . . . . . . . 34
4.2.3 Video handling . . . . . . . . . . . . . . . . . . . . . . 35

4.3 HMD compatibility . . . . . . . . . . . . . . . . . . . . . . . . 39



x CONTENTS

4.4 Optimization steps . . . . . . . . . . . . . . . . . . . . . . . . 40

5 Evaluation 43
5.1 Test environment . . . . . . . . . . . . . . . . . . . . . . . . . 43

5.1.1 Hardware . . . . . . . . . . . . . . . . . . . . . . . . . 43
5.1.2 Framework . . . . . . . . . . . . . . . . . . . . . . . . 44
5.1.3 Scenes . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

5.2 Pre-processing data . . . . . . . . . . . . . . . . . . . . . . . . 47
5.3 Video handling . . . . . . . . . . . . . . . . . . . . . . . . . . 50

5.3.1 Video codecs . . . . . . . . . . . . . . . . . . . . . . . 51
5.3.2 Picture formats . . . . . . . . . . . . . . . . . . . . . . 51
5.3.3 Texture handling . . . . . . . . . . . . . . . . . . . . . 52

5.4 Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
5.4.1 Framework for wide-screen videos . . . . . . . . . . . . 56
5.4.2 Framework for panoramic videos . . . . . . . . . . . . 56

5.5 Perception . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

6 Discussion 61
6.1 Further ideas . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
6.2 Other applications . . . . . . . . . . . . . . . . . . . . . . . . 65

7 Conclusion 67



List of Figures

2.1 Pupil detection algorithm . . . . . . . . . . . . . . . . . . . . 8
2.2 Structure of visual acuity . . . . . . . . . . . . . . . . . . . . 10
2.3 Example of foveated imaging . . . . . . . . . . . . . . . . . . 11

3.1 Algorithm flowchart . . . . . . . . . . . . . . . . . . . . . . . 15
3.2 Visual acuity heat map . . . . . . . . . . . . . . . . . . . . . . 17
3.3 Grid based data pre-processing . . . . . . . . . . . . . . . . . 19
3.4 Panoramic mappings . . . . . . . . . . . . . . . . . . . . . . . 24

4.1 Widescreen framework flowchart . . . . . . . . . . . . . . . . 32
4.2 Sampling-based frame reconstruction . . . . . . . . . . . . . . 33
4.3 Mip-map selection for panoramic video . . . . . . . . . . . . . 36
4.4 Panoramic framework flowchart . . . . . . . . . . . . . . . . . 37
4.5 Streamed texture levels . . . . . . . . . . . . . . . . . . . . . 38

5.1 Scene 1: wide-screen video Caminandes . . . . . . . . . . . . 46
5.2 Scene 2: panoramic video Inside the GI tract . . . . . . . . . 46
5.3 Scene 3: panoramic video Christmas market . . . . . . . . . . 47
5.4 Storage usage . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
5.5 Performance for different codecs . . . . . . . . . . . . . . . . . 52
5.6 Performance for different image formats . . . . . . . . . . . . 53
5.7 Performance for wide-screen videos . . . . . . . . . . . . . . . 57
5.8 Performance for panoramic videos . . . . . . . . . . . . . . . . 58
5.9 Rendering artifacts . . . . . . . . . . . . . . . . . . . . . . . . 59



xii LIST OF FIGURES



List of Tables

5.1 Data usage per mip-map . . . . . . . . . . . . . . . . . . . . . 48
5.2 Ressource usage for pre-processing . . . . . . . . . . . . . . . 50
5.3 Amount of pixels transferred . . . . . . . . . . . . . . . . . . . 54
5.4 Amount of memory usage . . . . . . . . . . . . . . . . . . . . 55



xiv LIST OF TABLES



Chapter 1

Introduction

1.1 Problem

Virtual reality applications often display videos or other interactive data
close to the eyes. A high resolution can significantly increase immersion and
realism. This often comes with drawbacks in terms of bandwidth requirements
not sustainable by current hardware, limiting the choice of video resolutions.
In order to decrease bandwidth as well as computation requirements, the
transferred data of high resolution video streams needs to be reduced.

In this thesis a method for high resolution video streaming is developed.
One approach to this is utilizing foveated imaging data. Unfortunately, stan-
dard video codecs are not capable of region-based access to video data, which
makes performing foveated imaging techniques difficult. Thus, a data format
capable of loading video regions in different quality settings needs to be de-
veloped. Using this, video data should be loaded in dynamic resolution levels
to adapt to the users’ vision. The goal is a simulation of visual acuity to
minimize the transferred data based on the characteristics of human vision.
An algorithm to efficiently incorporate visual acuity needs to select a set of
video data ideally suited for the users’ field of view.

The implementation needs to be able to visualize very high resolution
data in the focal center of the user and comparatively low resolution data
in the corner of their eyes. To apply this approach without harming the
users’ perception, a low-latency rendering and a restricted amount of newly
introduced rendering artifacts is preferable.

Furthermore, as eye movements are neither known nor estimated during
video pre-processing, the algorithm needs be capable of dynamically adapting
to eye movements. This is a major key point discerning this thesis from
imaging approaches which mold a preset focal point into existing video data.

The approach must be tested with different real-life wide-screen video
data. To increase the applications for this approach, it can be extended to
360-degree panoramic video data.



2 Introduction

1.2 Motivation

The resolution and quality of video data gets more and more wide-ranging,
with the current generation of even consumer devices being capable of cap-
turing and displaying 4096× 2160 (so-called 4K) video data. In the future,
formats like 8K, 16K and even higher are thinkable. However, data bandwidth,
video processing and consumer displays are amongst the main bottlenecks
in technological advancement. As the amount of data increases quadratically
with resolution size, the role of data bandwidth as a crucial bottleneck makes
very high resolution sizes unfavorable. Furthermore, the standard frame rate
of videos tends to increase as well, which makes a low-latency streaming per
frame even more desirable.

In virtual reality (VR), most commonly in modern applications involving
head-mounted displays (HMD), displays are very close to the users’ eyes.
A high resolution in the focal point is crucial to increase immersion and
decrease simulation sickness. However, in these applications, the users’ field
of view (FOV) is comparatively huge. Even more so for 360-degree videos,
where a large part of the video is always out of the users’ viewpoint. As a
result, very large parts of the video area are not perceived in the amount of
detail they are processed in. In common video rendering techniques, every
frame is processed in its entirety. This creates a bottleneck both in terms of
bandwidth and computation time.

However, modern HMD devices are capable of pupil-tracking techniques
to determine the users’ exact point of view. By analyzing the visual acuity
of the user a new determinant for choosing video quality can be introduced.

The idea of foveated imaging exploits properties of the Human Visual
System[67] to reduce video resolution in the peripheral viewing area. Using
this, only the focal center would need to render in the maximum resolution
available. Otherwise, a radial decrease of resolution is possible. This gives the
rendering algorithm an opportunity to vastly decrease the amount of video
data to process and stream.

When being able to decrease the amount of bandwidth transferred, this
opens the door to various other applications. For example, a server/client
approach with separate devices for decoding and displaying content would
allow mobile devices to use high resolution VR videos. Additionally, a vastly
reduced bandwidth could allow streaming over the internet or creating cloud-
based services for these applications.

1.3 About this thesis

The thesis implements and evaluates different ways to solve real-time video
rendering for high resolution data utilizing knowledge of foveated imaging
and the human vision system.



1.3 About this thesis 3

Chapter 2 introduces background knowledge and state-of-the-art tech-
niques relevant to this foveated imaging techniques. It starts with a short
introduction of virtual reality and head-mounted displays which motivate
this thesis. As a direct consequence of modern head-mounted displays, pupil
detection techniques and the human vision system are discussed subsequently.
There is a focus on visual acuity which will be a main pillar in approaching
this problem. Lastly, implementation techniques for high resolution videos
and image data, similar to those used to process vast amounts of data in
video games and ray tracing, are discussed.

Next, Chapter 3 discusses design decisions and options available for solving
the foveated video rendering. It builds a bridge between discussed theory
from Chapter 2 and practical implementations in Chapter 4. In the focus of
discussion are different approaches for factoring in acuity in video streaming
algorithms, so-called foveated imaging. Furthermore, it presents an efficient
way to pre-process data based on uniform grids and mip-mapping. Lastly,
options for loading and streaming raw video data are discussed, incorporating
both wide-screen videos and 360-degree panoramic videos.

In Chapter 4, implementation details based on previous design decisions
are explained exhaustively. During the project phases, two prototypes in
form of sophisticated frameworks for wide-screen data and panoramic videos
respectively are implemented. Each framework tests different design decisions
for a comprehensive analysis of each option. In the end, various optimization
steps to improve rendering speed and the perceived quality are presented.

The previous implementations are then evaluated in Chapter 5. Technical
features of both frameworks are analyzed regarding their performance, mem-
ory usage and storage usage. Furthermore, a broad comparison of different
design decisions to explore the limits and restrictions of each setting rounds
up the results. Lastly, the visual impact, or more specifically the impact to
human perception, is evaluated. Artifacts and issues in terms of rendering
quality and resolution levels are discussed in relation to the theory of human
vision system and its visual acuity.

Afterwards, in Chapter 6 the performance impact on different design
decisions is discussed. This includes a comprehensive analysis of each ap-
proaches’ limitations. Furthermore, an outlook on open questions regarding
this problem is presented.

Finally, Chapter 7 briefly summarizes the design decisions, implementa-
tions and results. It presents notable insights gained through this approach.



4 Introduction



Chapter 2

Related work

This chapter discusses relevant literature and background knowledge, on
which the thesis design and implementation are based on. In Section 2.1 an
overview of virtual reality (VR) systems, its history and current limitations
are presented. It will further emphasize on head-mounted displays which are
one of the most ubiquitous approach to virtual reality in recent times. In
advanced applications of HMD, pupil detection is used to further improve
the users’ perception, as discussed in Section 2.2. To design a VR system
closely related to the perception of the user, a certain knowledge of the human
vision system and its features is necessary, which is reviewed in Section 2.3.
Lastly, on a technical side, the implementations are based on various texture
techniques discussed in Section 2.4.

2.1 Virtual reality

In layman’s terms, virtual reality (VR) describes the simulation of a virtual
world. Usually, it describes the process of creating a special environment to
be immersed in. In contrast to normal video games, it aims to fully immerse
the user in terms of vision, but commonly also include other senses. Therefore,
VR feature special input devices tracking the users’ movement, head and arm
positions and so on. Furthermore, helmets, booths or other techniques are
used to fully replace regular eye vision with a virtual world and inhibit the
users’ perception of the real world while using the device.

There are various applications for VR, incorporating all kinds of hardware.
In its first relevant publication, the concept called The Ultimate Display was
described as “make that (virtual) world in the window look real, sound real,
feel real, and respond realistically to the viewers’ actions” [73][54]. During
the 1960 to 1990, various kinds of machines, simulators and other approaches
using multi-sensor input and output were developed and tested.

For input, there are a variety of devices used during history. Using sensors,
the users’ movements are captured in real-time. To successfully capture three



6 Related work

dimensional motion data, so-called 6DOF (six degrees of freedom) trackers
are used to capture position (3D) as well as orientation (yaw, pitch and
roll angles). Motion tracking is usually done using magnetic, mechanical,
optical or acoustic sensors. The usage of eye tracking also involves cameras[54].
Furthermore, properties like update rate, latency, accuracy are important as
they lead to loss diminished enjoyment perceived by the user which is later
discussed in terms of simulation sickness.

As a feedback to users, various output devices are used. Of course, classic
displays are used for visual perception. The immersion is enhanced by using
head mounted displays (HMD), but there is no conceptual difference. To
further increase immersion by using additional senses of the user, elements
like force or tactile feedback are popular[69]. The last major sense used is
usually audio by incorporating speakers. Senses commonly excluded are smell,
taste and non-traditional senses like temperature, balance and pain. However,
the classical definition coined by Sutherland[73] generally includes all kinds
of perception.

With decreasing size of hardware setups, HMD gained popularity, as
their setup is less complex[3]. The first HMD is considered to be the Sword of
Damocles [72]. These devices slowly gain access into consumer-grade hardware
with the release of products like the Oculus Rift[19].

Closely related to VR is augmented reality (AR). While VR simulates a
world where the user is fully immersed in, AR adds newly computer-generated
elements to the users’ perception in real world. It was first described that it
“presents a virtual world that enriches, rather than replaces the real world” [20].
This approach, while it seems like a Hollywood movie, is the introduction
of computer vision and technology to the users’ vision. The discontinued
product Google Glass[83] was an augmented reality device in a form of a
HMD. It includes a camera and a display, which serves as an overlay on the
users’ normal eye vision.

The more thorough view on the history of virtual reality is well presented
in a thesis[54] fully based on the history and applications of VR.

2.1.1 Simulation sickness

Virtual reality is prone to effects similar to nausea and seasickness[60]. Ad-
ditionally, various parameters can influence the users’ perception in both
positive and negative ways[49][42]. Resolution and performance of the system
have a great impact on the viewers’ pleasure, but can also result in simulation
sickness.

For classic VR approaches, resolution, field of view and flickering has been
greatly analyzed. When using an HMD system, field of view (FOV) plays a
major role as the display is very close to the eye. Thus, the FOV is very high.
Note however, that this does not correspond to the scene itself, as the visual
distance is still usually around two meters. When using immersive video



2.2 Pupil detection 7

material, latency and refresh rate of the rendering are also an important
factor.

The refresh rate directly translate to update rate for input devices. If the
input is prone to error, the joy of a user is harmed, as input and output are
directly connected through user interaction.

A promising parameter is accuracy. For input, it is obvious that some
sensors might have inaccurate measurements. In visual output however, this
can have several meanings. While resolution is important and a main mo-
tivation for this thesis, accuracy also translates to robustness. Thus, newly
introduced visual artifacts or rendering issues have a negative effect on this.

Subsequent studies have shown, that these results remain true for modern
approaches [45][56] and are valid for various uses of HMDs[50].

In foveated approaches, eye movements are used to directly influence the
users’ focal center within the scene. This is related to the previous paragraph
about input devices. Eye movements are a very delicate measurement, as
wrong measurements have a very high impact on the users’ viewpoint. Thus,
it needs to be reasonably accurate. Pupil detection algorithms are discussed
in detail in Section 2.2. When incorporating eye position as a determinant,
latency is another critical factor. His latency already depends on the pupil
detection algorithm, but can be increased by further processing.

A high delay or stuttering when processing eye movements can have an
impact on the video latency and overall perception of the user. This can
presumably result in a strong negative impact such as simulation sickness, as
the perceived vision does not correctly correspond to the eye movement. Fur-
thermore, rendering issues like artifacts, jitter and rough jumping in between
frames will presumably also increase negative effects.

2.2 Pupil detection

Head-mounted displays (HMD) are already an approach to achieve an in-
creased immersion. A single step to further increase the immersion of such
systems is the introduction of eye-tracking, or more specifically pupil-tracking.
This allows various new features like foveated imaging, which is also called
gaze-contingent rendering in this interactive context. Applications for this
are fully discussed in the later Section 2.3.

In this thesis, the data received from pupil-tracking is used to increase
performance by reducing data bandwidth. Likewise, knowledge of pupil posi-
tion can be used to enhance visual appearance in video games, but can also
be interesting for interactive movies or other applications.

There are multiple ways to approach computer vision problems surround-
ing pupil and eye detection. The input data is usually a captured image of
the users’ face or eyes. An algorithm assumes the pupil position and returns
a 2D value of the users’ view point on a panoramic plane. A common pupil



8 Related work

Figure 2.1: Pupil detection algorithm: The input is an image of a human
eye (left). Using computer vision algorithms, the position of the pupil is
determined and an estimated ellipse is returned (right). The colored ellipses
indicate different steps of detection within the algorithm.

detection algorithm is displayed in figure 2.1.
There are various implementations of pupil detection techniques incorpo-

rating different computer vision approaches and fields like machine learning
and others. It is possible to detect pupil position robustly in real time[27][85]
even on embedded devices[38]. Thus, it is possible to create affordable solu-
tions for binocular eye tracking in HMDs[68].

In more advanced cases, an approach using topography-based detection
with multiple different resolution pictures was developed[59]. Another inter-
esting work[53] proposes an approach using randomized regression trees to
determine the position of a pupil. It is reported to be efficient for real-time
usage even on mobile devices.

When designing algorithms for the detection of pupil positions, the na-
ture of voluntary and involuntary eye movements have to be taken into
account. So-called saccades[63] are very quick movements of eyes between
two phases of fixation. Saccades are not directly controlled by the user and
occur in subconsciousness. Thus, quick jumping between different fixations
are commonly measurable, even if the user fixes a single point. This needs to
be smoothed out by either the pupil detection algorithm or the application
using the output.

2.3 Human visual system

The human visual system is a big complex including topics from interdisci-
plinary research like ophthalmology, physiology and psychology. Thus, there
is a history of literature relevant to this topic.

In this thesis, the main interest is publications based on the behavior and



2.3 Human visual system 9

structure of the eye and its visual acuity. This includes the color spaces, edge
detection and other factors, which are relevant to the perception of the eye.
The developed algorithm needs to select relevant frame data based on an
educated guess on which regions are not perceived as strongly by the viewer.

Acuity The visual acuity describes the ability to observe detail. A well
established psychophysical model is from 1857 by Aubert and Foerster[70].

There is a fall-off in radial distance to the focal center of the eye. This
corresponds to the number of neurons within the eye[67], and has a linear de-
crease within the central vision region[47]. The minimum discernible angular
size increases with eccentricity for the first 20–30 degrees and a more rapid
fall-off afterwards[82]. Acuity can also have a strong influence on pattern
recognition[70].

Unfortunately, visual acuity is strongly user-dependent and can be trained
and improved up to sixfold[81]. Medical history like shortsightedness can also
have a strong impact on the eccentricity and thus angular size[17].

Furthermore, the actually perceived visual acuity is different in vertical
and horizontal direction and can also have different resolutions in the upper
and lower part of the eye[17].

However, this model is commonly used due to its simplicity. While it
does not perfectly simulate the visual acuity of a human eye, its conservative
approximation is close enough to be suited for gaze-contingent rendering.

A simplified model based on this acuity fall-off has been developed[80] and
extended in terms of visual resolution[40][78]. It can be roughly categorized
in two main parts of vision, called the central vision and the peripheral vision.
There is a noticeable fall-off within each field, but a rather strong difference
in between. A geometrical visualization of this model is shown in Figure 2.2.

The retinal integration time of the eye is approximately 40 ms[14]. This
means, there is a time of approximately 3–4 frames, where resolution differ-
ences can be delayed and artifacts be smoothed out until the retina is able
to fully perceive the highest detail.

Saliency Various approaches regarding the HVS are based on the saliency.
It describes the feature of something visually standing out. This can be some
kind of large color deviation, a moving object, hard edges or similar effects
which have an extra impact on the perception.

Saliency-based approaches are another way to process scenes with account-
ing for characteristics of the HVS, as used by [51][13]. Usually, saliency-based
algorithm do not factor in gaze and thus only rely on information available
within the image data.

Frequency of information has a close relation to perception[36] and refers
to the amount of edges and sharpness within an image. It is usually described
by a Fourier transform and is used in a variety of filtering approaches.



10 Related work

Figure 2.2: Structure of visual acuity: The visual field can be categorized
into a central region and a peripheral region. The point p is the fixation
point of the eyes. The area A is the foveally focused region. There is a linear
fall-off[47] in radius r to p. Additionally, there is a peculiar drop in between
these two regions[82].

The influence of temporal variance and other image characteristics like
the amount of edges have a strong influence to perception[76][6].

In ray tracing, there are measures to increase the amount of samples
based on saliency-based methods to find visually relevant areas[10][71]. In
the context of ray tracing, this is also called selective rendering.

Color perception When incorporating color, RGB color space turns out
to be improper for comparisons based on human perception[74]. HSV, LAB
or other[11] especially for human perception developed color spaces can give
assumptions suitable for this algorithm. Based on this, in order to optimize
the algorithm, color variance is a promising point to analyze.

Active versus passive gaze estimation The idea of a gaze-contingent
rendering approach is to factor in eye position for an acuity-optimized ren-
dering. This was first done in the 90s[48][4] and is frequently used since then
in various applications.

There are so-called gaze-contingent multi-resolution displays which try to
use gaze-contingent approaches to display the highest resolution within the
foval point of a user[61][16]. An example result of this approach is visualized
in Figure 2.3.



2.3 Human visual system 11

Figure 2.3: This figure[37] visualizes the results of a fovated imaging approach.
The fixation point of the users’ eye is in the middle left. In this region, the
resolution is the highest. There is a fall-off in terms of resolution in distance
to the focal point, which results in a blurry peripheral vision.

However, there is an important distinction between active and passive
gaze estimations used for these approaches.

In passive approaches, a presumed fixation point is guessed by the algo-
rithm or set by the user in advance of the process. This can be based on
saliency, the scene contents or other factors. In a project using passive gaze
estimation, single images are pre-processed to mold in an approximation of
visual acuity. Note, that this is a static approach as it permanently changes
the underlying media data. As a result, it does not allow to move the gaze
position after the algorithm is done processing video data.

This is typically used in order to improve video data in terms of storage
or bandwidth for scenes. Use cases might include news or sport scenes, where
the user is expected to watch a certain point of the video. Thus, the rest of
the video can be saved in a lower resolution as the focus lies somewhere else.

This passive approach has been tested for various resolution sizes in the
past[43] and was implemented in multiple foveated image codecs. The goals
are things like an automatic fixation detection[79] or a good compression
with optimal rate control[46]. Notice, that neither of these approaches have
a dynamic component, as they statically render the eye information into the
image data. This also means, they are error-prone if saliency diverges from
actual gaze direction.



12 Related work

The alternative are active gaze estimations. This approach is more dy-
namic, as it accounts for an actual user input[15][52]. Typically, pupil detection
algorithms are used to measure the current eye positions. Afterwards, they
are used to dynamically set a gaze estimation used for further processing.

An actual example of this is foveated ray-tracing. It uses active gaze
estimation within an HMD to render geometric scenes using gaze-contingent
rendering techniques[29]. Instead of captured video data it uses three dimen-
sional scenes. As ray-tracing is already sample-based, a foveated approach
can easily be added to save calculations in arbitrary regions. This is a huge
difference to this thesis’ topic, as video data is commonly not prepared for
sampling.

This thesis uses an approach using active gaze estimation. Opposed to pre-
vious publications for foveated codecs using passive gaze estimation[79][46],
this approach does dynamically adapt to each users’ eye motion by incor-
porating an active gaze estimation. Thus, it is not possible to estimate a
singular fixation point or remove any data, as high resolution data must be
available for any region of the video at any time. Similar to the ray tracing
approach[29], the goal of this approach is a reduction of actual data to be
processed and later streamed to the GPU. A major difference to other ap-
proaches is the data access as video data is not well structured for foveated
processing and needs to get a newly designed data format.

2.4 High Resolution Textures

The core challenge of loading and streaming high resolution data to the
GPU is one of the main issues for video games and other kinds of dynamic
applications rendered on a graphics card. Thus, this field is well studied
and numerous approaches and solutions exist. This is also relevant for other
applications, like geo information systems[33].

Mip-mapping The standard approach to different texture sizes in video
games is mip-mapping[84]. The key idea is saving downsampled variants of
each texture within the forth free quadrant of a RGBA image. This way,
video RAM is saved efficiently.

Furthermore, different projects solve efficient texturing by using differ-
ent mip-map values for mapping regions[30]. Thus, mip-map levels must be
selected reasonably[18]. There are other ideas to break off from standard
mip-mapping like Octree textures[8] but they usually introduce an overhead
in algorithmic complexity.

In this thesis, video RAM is not specifically targeted, but the approach of
having downsampled duplicates of video data gives additional opportunities
for efficient video access.



2.4 High Resolution Textures 13

High resolution video approaches Similar to the goal of this thesis,
previous projects have investigated high resolution video playback within
virtual environments[41]. They use a grid to load video tiles based on the
head direction. While this is closely related, no analyses of eye position or
the simulation of visual acuity are performed.

In another project[64], these ideas are implemented for video game engines
to have a procedural technique in content generation. In a related talk by
Microsoft[1], these techniques are exploited to enhance texture streaming
to the GPU. The idea is to update high resolution texture data in smaller
tiles for different rendering regions independently. This allows a dynamic
texturing of scenes for different level of details while zooming and using a
memory efficient data layout for the textures.

Video decoding Video decoding is an essential pillar in the design of this
thesis, as video data is loaded from the hard drive in real time, before then
processed and streamed to the graphics unit.

For video decoding, a region or pixel-based access is uncommon or not
possible. Thus, a foveated imaging process has trouble accessing data de-
pending on eye position. Region-of-interest can be included into the encoding
process[32], but is usually not available for decoding.

There are efforts to make it possible to extract region-based data from
a video with only reasonable overhead[2]. However, these techniques are not
implemented in commonly available video processing frameworks.

2.4.1 Ray tracing-based approaches

Ray tracing[5] is not common in both virtual reality applications and video
processing techniques. Therefore, one might wonder why to include it into
the background chapter.

The nature of ray tracing based approaches is based on sampling. In
almost every case, some kind of raw scene data is pre-processed in a way
to quickly load data. Furthermore, data lookup is usually done based on
sampling or looking at certain chunks of the scene.

In this way, these two sets of problems are related. In terms of video
loading, there is a need of data pre-processing in order to efficiently decode
only relevant parts of the full frames. Furthermore, to incorporate knowledge
from the human vision system, it will be necessary to have a look on how
other applications in computer graphics solve similar issues.

For data pre-processing, ray tracing uses acceleration structures to have
geometrical data in an efficiently traversable format. More modern approaches
use sophisticated algorithms incorporating geometrical features of the scene.
While this is promising and could be also used in videos by incorporating a
saliency-based approach, it is not the focus of this thesis.



14 Related work

However, in the beginnings of ray tracing, simpler data structures like
the grids were popular. A grid is a space partitioning data structure for ray
tracing, introduced by Fujimoto et al. [23]. In its most common approach,
the Uniform Grid, it divides the three dimensional space into N ×M × O
cells of same size, so called voxels. For this project, this could be adapted to
a 2D approach.

Additionally, ray tracing tries to solve several sampling-based challenges.
Sampling errors[55] and performance issues due to the amount of sampling per
pixels[77] are common issues. This is strictly related to the Nyquist sampling
theorem[65]. This thesis tries sampling-based approaches which are prone to
similar issues.



Chapter 3

Method

This chapter discusses design options for developing a foveated high resolution
video renderer. Background knowledge from the previous chapter is distilled
to form an outline suited for an efficient implementation.

As shown in Figure 3.1, the design scheme can be summarized by dividing
the process into three main blocks. Loosely, design decisions are either con-
cerning data pre-processing, video loading or texture streaming. The choice
of data type, video codec and method to factoring in acuity influences the
former two. The way of transferring pixel data to the GPU and reconstructing
the rendered frame is part of latter.

Figure 3.1: Algorithm flowchart: This flowchart visualizes the three main
pillars of the design. The algorithm will have some element of data pre-
processing which is solely static and can not contain eye information. This is
noteworthy, as the algorithm needs to dynamically adjust to eye movements.
The video loading process then uses the eye position information as deter-
minant to decrease pixel data and in succession reduced bandwidth demand.
Lastly, the texture streaming sends all necessary data to the GPU in a way,
that shaders are capable of reconstructing a full frame.

First, section 3.1 will introduce three design patterns applicable to intro-
duce acuity as a determinant into a rendering algorithm. Each technique is
explained and compared in terms of assumed rendering quality and algorith-
mic efficiency. These approaches set an outline for designing data flow within



16 Method

the algorithm. Next, section 3.2 will determine necessary pre-processing steps
in order to successfully load region-based foveated video data. Lastly, section
3.3 will discuss both the design of video loading and texture streaming, as
they are closely related.

3.1 Factoring in acuity

As discussed in the introduction, the main motivation of this thesis is a
foveated approach to video data streaming. Video bandwidth commonly
creates a major bottleneck for media streaming. An uncompressed RGB
frame consists of w · h · 3 character values for width w and height h. Or in
other words, it creates a stream of raw data linear to the videos frame rate
and quadratically to its resolution.

When factoring in knowledge about visual acuity (Section 2.3), it follows
that only a small percentage of pixels are perceivable in a very high detail.
The rest blurs out drastically depending on the distance to the users’ focal
point. As a consequence a vast majority of pixels, and thus bandwidth, is
wasted in regions which are not perceived at highest level of detail.

In case of normal video rendering, this information is not necessarily
helpful, as the viewer usually watches videos from a high distance. Due to
this, the radial decline may not be strong enough and most of the scene is
perceived normally. This of course depends on the size of the display.

However, HMD systems confront the user with displays extremely close
to the eye. While the virtual distance to the scene is still about 2 meters, it
vastly increases the field of view. Therefore, the decline of visual acuity has
a strong impact on corner regions of the overall image.

While this knowledge is handy, both the raw data and the algorithm needs
to be designed in a certain way to take advantage of these characteristics. The
former will be discussed later in Section 3.2, as its design is largely dependent
on the following results.

The input to a foveated imaging algorithm is a raw frame F and a foveated
area A corresponding to the focal point p and its radius r. As the main
purpose of this algorithm is a reduction of frame data, the output should
be a newly computed frame C, so that sizeC 6 sizeF . The area A needs
to be perceptually equal in both frames, but rendering mistakes become
increasingly tolerable with distance to point p.

The minimum discernible angular size increases roughly linear within the
first 20 to 30 degrees, but then rises more rapidly[82]. Thus, the vision can
be categorized into two regions, called peripheral vision and central vision
with a peculiar acuity drop in between.

For this purpose, three kinds of techniques are discussed in greater detail.
Sampling-based approaches have a direct mathematical relationship to the
acuity function, while grid-based approaches are a rough estimation and



3.1 Factoring in acuity 17

therefore have a rather loose connection to the radial decrease of visual
acuity.

Lastly, analyzing image variance can hint at certain points of interest
within an image. This can be seen as a supplement to other approaches,
as it has no direct connection to the visual acuity by itself. Each one is
implemented and exhaustively tested in Chapter 4 and 5 respectively.

3.1.1 Sampling-based approaches

When modelling visual acuity as a mathematical function F (px,y) = a, one
gets an acuity value a for each pixel px,y of an input frame. As previously
described in Section 2.3, this results in a radial distribution with a very
high resoluted focal center region. When visualized as a heat map, it roughly
results in a distribution close to shown in figure 3.2.

Figure 3.2: Visual acuity heat map: This heatmap rendered on top of a video
frame visualizes the visual acuity distribution of a human eye. Warm colors
indicate a high resolution while cold colors indicate a low resolution. The
users’ foveal region lies in the center of the image.

In ray-tracing techniques, a ray is casted for each pixel in a given frame.
Every ray is evaluated in 3d space to calculate whether it hits an object.
Using this, a color value for each single pixel is determined. Using techniques
similar to this, visual acuity can be modeled using optical ray tracing for
medical applications[26].

The results of the acuity function are constant, as the distribution does not
change over time. Moreover, due to its radial nature the values only depend
on the radius r relative to the focal center. Thus, it is possible to precalculate
all values to a 2 dimensional acuity mask. Using this, eye movements can be
treated as translation by a vector ~v.

While this approach has a close mathematical connection to the way
the human eye perceives images, it has some drawbacks when it comes to



18 Method

data processing. First, the eye perceives these acuity changes continuously
while an algorithm unavoidably has discrete units. Second, the eye as a very
high amount of cone cells in the foveal region[66]. This can not be simulated
by fixed rectangular video resolutions. Thus, it is prone to sampling-based
errors [55] known from ray tracing. Furthermore, sampling is sensitive to an
introduction of performance bottlenecks[77].

While there are region-based decoding algorithms for some video codecs,
no currently available approach is capable of per-pixel extractions. When
analyzing video encoding algorithms, it is clear why this would not be efficient.
Usually, regional data is woven into a zipped data format by looking at
temporal and neighborhood-based variations. Therefore, extracting small
regions would create a big data overhead per pixel, rendering encoding efforts
useless. As a result, when sparsely sampling only relevant data from previously
decoded video frames, every frame, or at least large regions need to be decoded
entirely. Therefore, data access can not adapt closely to the sampled acuity
value.

In conclusion, a sample-based approach can only efficiently influence the
texture streaming process. It is possible to gather samples from decoded
video data. However, loading video tiles can not be implemented efficiently
based on sampling.

3.1.2 Grid-based approaches

This idea focuses on adjusting the sampling-based approach for a better
way to load video data. In order to load video regions in a simplistic and
naive approach, incorporating grid-based ideas have been one of the first
data structures for ray tracing[23]. The problem is in fact similar, as classic
ray tracing tried to solve the same issue: A during pre-processing unknown
distributed set of sample points on an arbitrary set of data.

Modern approaches in ray tracing often greatly incorporate the scenes
geometric data and its variance. It is an option for foveated imaging too
and is discussed in the Section 3.1.3 in greater detail. However, in terms of
complexity, there is a focus on a universal approach suitable without further
video analysis.

The idea of a grid-based approach is simple. The surface is divided into
t = n · m tiles of the same size. For foveated imaging, it would result in a
pre-processed video of t small video tiles. This is a naive approach to allow
loading single video regions without the need of a specialized video codec
supporting such functionality. When applying a grid on a video, it results in
a spatial subdivision as visualized in Figure 3.3.

The previously discussed sampling-based approach to factor in visual
acuity can be roughly approximated with a suitable sized grid. An algorithm
selects a quality setting for every grid cell. Based on this, different raw data
is loaded for each cell. This can be done efficiently for video loading.



3.1 Factoring in acuity 19

Figure 3.3: Grid based data pre-processing: This scene visualizes a wide-
screen video pre-processed in a 4× 4 grid. Afterwards, every video tile will
be available in different resolution settings.

Furthermore, grid-based approaches are also favorable in terms of texture
streaming. Most GPU functions are optimized for batch operations, with a
strong disadvantage on every per-pixel access of texture data. Similarly, CPU-
based imaging libraries are also heavily optimized towards batch operations,
as micro-benchmarking easily reveals. Therefore, updating a full video tile at
once has the highest efficiency.

As a result, for foveated imaging techniques a grid-based approach is
a rough approximation of sampling-based approaches. They can solve the
problem more efficiently in both video loading and streaming. This makes
them a main candidate for the implementation.

3.1.3 Saliency-based approaches

This section does not emphasize on visual acuity by itself, but rather the
possibility of incorporating the full human vision system. As previously dis-
cussed, these approaches sample sparsely and thus their results are prone to
sampling errors. Therefore, rendering artifacts, sharp edges and other visual
problems can harm the viewers’ perception.

They have an impact on the human visual system and thus the viewers’
perception. Therefore, image variance is commonly estimated within saliency-
based approaches[51]. It shows, that these approaches have promising results
when it comes to simulating the behavior of a human eye.

As a result, it might be advisable to introduce further determinants based
on the HVS into the algorithm, to ensure smooth transitions and sustainable
rendering. While the focal center should always have the maximum acuity,
this is not true for other parts of the image. Image data by itself could have
relevant information on which quality setting is most suitable when selecting
acuity values for cornered objects.



20 Method

For example, an empty house wall without either a peculiar texture or
color deviances has less impact on our subconscious mind than repeating
checkerboard patterns. Similarly, a white car has probably less impact than a
rainbow colored car. Based on this, in order to optimize the algorithm, color
variance are an interesting point to analyze.

When determining these factors, RGB color space turns out to be im-
proper for comparisons of human perception[74]. HSV, LAB or other[11]
especially for human perception developed color spaces can give better as-
sumptions for this algorithm.

Furthermore, temporal variance and other image characteristics like FFT
transformations and the amount of edges per image region can have further
impact on perception[76][6].

Variance-based approaches give an interesting second determinant in the
choice of image acuity based on the video data itself. While this is not as
relevant for the foveal focus region, it can give better assumptions on other
image regions. However, this needs a vast amount of additional image analysis
within the data pre-processing phase.

The focus of the thesis is based on approaches using visual acuity and
without information based on image data. Thus, not all saliency-based ap-
proaches have been investigated. While optimizing and fine-tuning the final
results, some color variance techniques were added. Other approaches are
open for future work.

3.2 Video pre-processing

Depending on the acuity function, video data needs to be loaded in different
resolution settings based on their position relative to the eye center. However,
no available video codec has functionality relevant to help with this flow of
data.

While there are approaches to decode videos based on their region, they
are not implemented in commonly available video processing frameworks.
This increases the complexity for implementations.

Furthermore, they come with an overhead in accessing a singular region.
When only one region is accessed, this is of course much faster than decoding
a full frame. However, to fully sample a whole frame based on visual acuity,
pixels from every region in a video are needed. As a result, these approaches
can not provide a reasonable increase in efficiency, when it comes to loading
acuity based data.

Thus, in order to efficiently access video data, the data needs to be pre-
processed. This way, the algorithm can circumvent limitations of the codecs.

The pre-processing step can theoretically take as much time as suitable,
as it needs to be done only once per video. This way, it does not restrict the
capabilities of the rendering system.



3.2 Video pre-processing 21

Mip-mapping A main bottleneck of video accesses is due to decoding
whole frames of tremendous resolutions. For an 8K frame, only a small patch
of a few hundred pixels is relevant to the foveal focus region. This is a
challenge, as most codecs don’t allow easy access to single regions and impede
sampling-based approaches.

To solve this, in a first step, mip-map levels for the video should be gen-
erated. This can be pure down-sampling, as common in video game engines.
Please note, that in video gaming the mip-mapping is commonly done dynam-
ically after GPU streaming. In foveated imaging, it will be done in advance
to enhance efficiency up to the level of file access.

The size of mip-mapping is chosen depending on the scene. There is no
reason to limit it to certain multipliers or ranges, as most shader-based recon-
structing techniques can circumvent any issues with custom texture functions.
However, it may lead to anti-aliasing and rounding errors for unfortunate
chosen mip-map sizes. This can occur if the original video size is not divisible
by multiples of two, where the resulting mip-map can be half a pixel off
depending on the video region.

Uniform grid As previously discussed in section 3.1.2, the data can be
transformed to a grid-based structure. A simple video or image pre-processing
can cut them into single tiles.

When having no information about the video characteristics, a uniform
approach to grids is the only reasonable choice. There is the possibility
to analyze videos in advance and determine a better suited grid approach.
However, this has a tremendous additional complexity, bursting the limits
and intentions of this thesis. Thus, it is moved to the future work for a more
extensive analysis.

A uniform grid has a resolution of n ·m. For quadratic video input, as
popular in panoramic videos using cube mapping, setting n = m seems well
suitable. For wide-screen videos, a ratio related to their aspect ratio might
be more efficient.

Utilizing a combination of uniform grid and mip-mapping, the video can
render in a very high mip-map level on one side of the screen while being in
a very low mip-map level on the rest of the screen.

Variance data To implement the ideas from Section 3.1.3, it might be the
most efficient way to calculate variance data in advance. It does not change
based on the users’ eye position, as it is solely based on video characteristics.

This data can be calculated in parallel to re-encodings, but should be
performed on the highest mip-map level as it contains the most video data.



22 Method

3.3 Video handling

This section describes the design of video handling. First, video data is loaded
into the memory based on the acuity algorithm. Then, it is transferred to the
GPU and reconstructed in order to render a full frame. Transferring the pixel
data to the GPU is also called streaming. Video game techniques commonly
use dynamically changing textures, so this problem is distinct to usual 3D
processing done by a GPU.

Video loading The loading is based on the video codec of choice. When
introducing common video processing libraries, all of them should share a
similar API. Thus, multiple codecs can be used and compared in terms of
performance.

Alternatively, a series of single pictures are semantically equivalent to
videos. It needs to be tested whether real videos or picture series are advan-
tagous for the algorithm.

Based on an implementation of the acuity function and the focal point
as input data, a set of video tiles is loaded. As this process might result in a
bottleneck of decoding, a multi-threaded design is advisable.

Eye movements result in a change of resolution settings and thus a change
of loaded tiles. In case of video files, this means other video tiles are opened
and seeked to the relevant frame to be loaded. Unfortunately, seeking might
not always be available in linear time, which complicates the video loading
algorithm.

In order to load video tiles efficiently, the multi-threaded approach needs
to adapt to this and fill unavailable video tiles with other data. For example,
it could load a wrong resolution for a few frames, while the right mip-map
level is processed in another thread. When ready, it can gradually exchange
the video tiles to fully adapt to the users’ visual acuity. This is discussed
extensively in later sections regarding implementation (Section 4.1.3) and its
limitations (Section 5.5).

Texture streaming A texture update, that means an upload of raw data
from CPU to GPU, is one of the most expensive operations in graphics
frameworks. Therefore, the data needs to be as minimal as possible.

For GPU operations, frame buffer objects tend to be the fastest option,
with pixel-buffer objects being a close second depending on the use case.
It is cheaper to update sub-regions than updating a whole texture at once.
Furthermore, the options of OpenGL allow various custom formats like 1D
textures for lookups using 1D indices. This way, sampling based approaches
can be optimized by collecting 1D arrays of data and reconstructing their
full frames within the shader.



3.3 Video handling 23

3.3.1 Reconstruct video frames

Rendering a wide-screen video with hardware-acceleration is commonly done
by rendering a 2D texture to a panoramic plane in parallel to the view
port. This is an easy task for most videos and has no issues with bandwidth
for normally sized videos. However, a high resolution video can exceed the
bandwidth limit easily, as every frame has a raw data of w · h · c pixels per
width w, height h and channels c. This is a quadratical increment with its
resolution.

For gaze-contingent rendering to work, the video data is pre-processed
on CPU and pixels are selected in a way to ensure a minimum of raw data
to be transferred. It sends all data needed for shader-based reconstruction
of the full image to the GPU. Afterwards, the shader needs to combine the
data efficiently.

On the CPU, the data is compressed as much as possible. This can be
easily done by removing irrelevant data and focusing on either the sample
data by itself or chunks of different resolution data. As a goal, no duplicate
data should be transferred.

Afterwards, on the GPU, there needs to be some kind of interpolation
to reconstruct the full frame with only limited data transferred. This can be
done using look-up tables and precalculated masks.

As an alternative to decreasing the raw data send to GPU, the texture
updates can occur less often. While most videos have a frame rate of 25,
GPUs easily exceed this. The data for every region should however to be
updated at least once per video frame, as the difference between two frames
can be big enough for the user to perceive. Furthermore, in a grid-based
approach, the video frame needs to be consistent, as frame inconsistency can
result in hard edges depending on video contents.

3.3.2 Handling 360-degree panoramic videos

For panoramic videos, a similar approach has been tested to have interactive
rendering of high resolution video[31]. Based on the users’ head position, video
chunks are loaded from the video data based on their cube mapping. Different
mappings suitable for this are visualized in figure 3.4. The video tiling is solved
similar to a grid-based approach. To guarantee a fluid streaming, prefetching
of non-visible regions was added. Their approach however does not factor
in dynamic resolution deviations based on visual acuity. Furthermore, no
multiple mip-map levels were used, so the loaded video tiles have an equal
resolution.

In this approach, a simulation of the visual acuity is added. This results
in resolution deviations which need to be modeled by the renderer in order
to sufficiently stream texture data to the GPU.

For displaying panoramic textures on a GPU, most approaches favor



24 Method

Figure 3.4: Panoramic mappings: The top figure shows a classical UV map
which is spherically mapped to its 3D model[75]. In the bottom, it shows
a cube mapping[86]. This approach is common for skymaps and similar
panoramic approaches, as it allows expressing a 360-degree cube surface as
six quadratic 2D textures.



3.3 Video handling 25

either a spherical or cube-mapped based projection. A cube-mapped based
projection consists of six quadratic textures simulating each face of a cube[25].
Cube-mapping is commonly used for skydomes in video games. This approach
allows a mobile viewpoint in the scene, making interactive scenes easier to
create. Due to this, cube-mapping is heavily integrated in modern graphic
cards. As a disadvantage for cube-mapped data, a uniform grid gets distorted
towards the corners due to its projection. Therefore, tiles in the seams are
ought to be selected more conservatively.

As an alternative, sphere mapping provides another common mapping for
360-degree panoramic videos. A uniform grid mapped on a spherical surface
has fewer distortion in terms of perspective. However, this approach needs
further transformations when calculating uniform grid positions based on the
view vector. This adds a slight complexity to its calculations. Additionally,
it has disadvantages for possible usage of mobile scenes.

Prefetching can be introduced for smoother rendering of movements. As
pupil movements are prone to having very fast saccades[63], a low resolution
version of regions close to the users’ foveal center need to be accessible at any
time. This is usually already true, as this data is used to render out-of-focus
regions. Furthermore, depending on the overall speed of the implementa-
tion, quality discrepancy during eye movements might be visible. Real time
videos are the main purpose, so changes due to eye movements are delayed a
maximum of one video frame.

Additionally, head movements can be added. Implementation wise, this
is equivalent to eye movements. However, the angle increases and 180-degree
movements would be possible. It is a performance trade-off, which movements
are taken care of by the rendering. Again, the maximum waiting time to
adjust head movements will also be one video frame. This could have a minor
perception impact on low frame rate videos.



26 Method



Chapter 4

Implementation

This thesis’ implementation has an iterative prototype-driven development.
Due to this, there have been multiple versions incorporating different phases
of design and development. When grouping together, there has been im-
plementations in two directions, resulting in a rewrite half-way during the
project. As every approach has his insights in future development phases,
they are discussed exhaustively. This points out advantages as well as draw
backs of different implementations.

Both resulting frameworks were developed on Unix based systems written
in standard C++ ’14. They use SDL 2.0[44] and OpenGL 4.1 for rendering.
In terms of video and image loading, a mix of OpenCV 3.1[35], FFmpeg
2.8.6[21] and STB[7] were used. Althrough not tested on other platforms,
each code was written with portability in mind.

In the first iteration discussed in Section 4.1, a framework for wide-screen
videos based solely on sampling-based approaches was designed. As video
loading had various issues due to the nature of their video codec, a hybrid
solution using grid tiles was established.

Next, a rewrite discussed in Section 4.2 focused on better support for
panoramic videos. Due to afore-mentioned issues, this approach adapted into
a solely grid-based solution. This version also adds cube maps as rendering
surface. Thus, it is better suited for VR applications.

Lastly, the brief Section 4.3 discusses ways on debugging HMD usage on
a computer as well as issues when porting current solutions to a HMD, while
section 4.4 emphasizes on optimization steps, both in terms of performance
and rendering quality.

4.1 Framework for wide-screen videos

This section summarizes the first iteration of development. For this approach,
testing a sampling-based approach to factor in visual acuity was a main goal.
To implement video access more efficiently, a grid-based approach is added.



28 Implementation

This results in a hybrid model.
In order to load the video files, a complex multi-threaded handler is built

to ensure a fluid video rendering. It will sacrifice accurateness in terms of
visual perception for a few frames after eye movements, in order to maximize
the speed of the system.

For processing pixel data to the GPU, it uses a sophisticated approach
with pre-calculated masks: a static mask to determine samples, as well as
an interpolation mask which serves as a look up table for nearest neighbor
interpolations. It can efficiently transfer video data and later reconstruct it
linearly during shading.

4.1.1 Acuity by sampling

As known from ray tracing, in a sampling-based approach there are n samples,
which are shot into the scene. Every pixel is assigned a value based on its hit
point. For this project this simply means every sample has the color value of
the video on that position. There are three things to note.

• Uncommonly, based on the nature of visual acuity, the sampling rate
is dynamically changing in radius to the foveal center.

• The visual acuity is however static and does not change when moving
relative to the foveal region.

• There are gaps between samples which need to be filled with data.

As a basis for the sampling, an acuity mask is calculated. The mask has
the size of the viewpoint. It has the highest density in the center region and
gets sparse in distance to the center. This mask can be applied on the eye
view vector to have a static knowledge about all necessary sample points.

For an efficient solution to interpolation, pre-calculation is an option. In
the same fashion as the acuity mask, all interpolation values are static. Thus,
an interpolation mask is created.

Both masks are created in Matlab and exported to a text format. The
acuity mask is simply a list of (x, y)-coordinates for every sample. In this
implementation a 1920 × 1920 mask with 690926 samples is used. The in-
terpolation mask is a matrix, where every (x, y)-coordinate has a specific
sample as value. For later convenience, the sample indices are transformed
to 1D. Within the interpolation mask, the nearest sampling point to every
coordinate is calculated. As a result, the interpolation mask contains the
nearest neighbor approximations in a hard-coded manner.

Drawbacks of sampling

Unfortunately, sampling-based appproaches come with a hand full of draw-
backs. A prominent issue is aliasing. This often happens in patterns or close



4.1 Framework for wide-screen videos 29

to edges, where sampling points are prone to errors.
Shown by the Nyquist sampling theorem[65], the sample rate needs to

be twice as high as the information frequency. In case of the visual acuity
approximation, this ratio gets worse with distance to the foveal focus center.
Thus, the error gets bigger. This can be an issue as big regions are interpolated,
especially in the corner of the eye. Therefore, a sampling-based aliasing issue
will result in heavy flickering for corner areas, as those as mostly prone to
errors.

Another issue is performance. Most algorithms for software and hardware
are optimized for batch access. Access to a single pixel are often only possible
with large and slow workarounds, which can introduce another bottleneck.
This is already an issue for single pictures, where pixel-accesses can’t be opti-
mized in terms of hardware cache for example. When using video materials,
this problem gets severe.

There are mathematical solutions for accessing some regions of the video,
albeit having an overhead compared full video access in relation to region
size[2]. However, these are not commonly available for a wide range of video
codecs, and furthermore are not implemented in any high-level video process-
ing libraries. On top of that, this is still a region-based access and does not
accelerate pixel based access, which results in very large overhead for sparse
corner pixels.

Grid-based acuity for video access

The issues for sampling-based access to the video data is decoding speed, as
a major bottleneck of high resolution videos is the performance of decoding
full frames. While 4K videos are not an issue anymore, a video with 12K
resolution and a high bit rate is unplayable for any consumer grade hardware.
Therefore, the video loading needs to adapt to this situation.

When evaluating samples for every region of the video, every frame would
need to be decoded entirely, albeit most of the video data is not used and
discarded after the sampling process.

In order to avoid full frame decoding, a grid-based video loading is intro-
duced below the sampling algorithm. The video is pre-processed in a new
file format containing a uniform grid and mip-map levels for every grid cell.
These videos are called video tiles and are a major pillar for the video loading
process.

The sampling will use the highest mip-map level for the area in the foveal
focus region. In distance to this point, lower mip-map levels are used for
sampling, providing a faster decoding speed, as the video tiles will have much
lower resolution, corresponding to the visual acuity.

As a result, this framework uses a hybrid approach of both a sampling-
based algorithm and a grid-based algorithm. The video is loaded in a grid-
based manner to avoid issues and performance bottlenecks with full sized



30 Implementation

video data. Afterwards, a sampling-based acuity mask is applied to add a
realistic approximation of the visual acuity. In the end, an interpolation mask
with precalculated value fills in blank areas between sampling points.

4.1.2 Data pre-processing

Every video needs to be in a certain format to satisfy the requirements of an
efficient video loading. Both grid-based subdivisions and mip-map values are
needed.

As a result, every video gets re-encoded in two smaller mip-map levels.
Furthermore, every mip-map level is split into a 4 × 4 uniform grid. This
creates 48 small video files out of the source video. While this comes in hand
with a storage overhead, this step is necessary for video loading to perform
in efficiently.

The application of a uniform grid on a wide-screen video as resulted by
the pre-processing function is visualized in figure 3.3 in previous chapter. It
shows a 4 × 4 grid. A 8 × 4 grid would be another thinkable option, as it
better adapts to the nature of a wide-screen video. However, it also doubles
the amount of open file handles and video streams in total.

The pre-processing is done by a bash script utilizing FFmpeg[21] for
video processing. The video format is interchangeable and various formats
are tested in the evaluation chapter 5.

4.1.3 Texture loading

The acuity and interpolation masks are fully loaded into the memory. Then,
an algorithm decides for every sample point in the acuity mask, which video
tile needs to be loaded. Video tiles out of view are not loaded. The selection
of mip-map levels are based on a thresholding in distance to the center of
the acuity mask.

For every video tile, all video files for every mip-map value are open
in parallel. In terms of processing usage, video seeking is quite expensive.
Therefore, an open file handle for every tile and mip-map will provide fast
access to the next frames with the smallest amount of seeking possible.

Video handling This comes in hand with multi-tasking issues and the
need for a sophisticated threading model around the frame retrieval phase.
The process is visualized in Figure 4.1.

The video handler has a main thread which executes sampling for every
video tile. It assumes the open file handle for a tile to be at frame n− 1 to
calculate the frame n. After acquiring frame data, a pixel-based access for
each sample determines the sampling results for this tile. This is directly
done for every video tile which is waiting at frame n− 1. This would be the



4.1 Framework for wide-screen videos 31

case, if the last frame was calculated beforehand and no eye movements have
occurred.

In parallel, the video handler checks which needed open file handles are
not waiting at frame n− 1. If this is the case, the relevant video handle was
unused in the last frame and did not seek to a recent frame. This happens
if eye movements have occurred, which results in a change of the mip-map
levels to be loaded for each tile. The video handler will spawn one thread in
a thread-pool for each open file handler which needs seeking.

If the sampling thread is in idle, it will start using lower mip-map levels,
which might be seeked to a more recent frame, to complete its sampling.
This case, the sampling can be done more quickly while sacrificing rendering
quality. As the texture streaming has no relevant bottleneck, this streaming
can happen for every GPU frame. This means, the quality of sampling can
be adjusted from frame to frame, whenever the seeking threads are finished.

As an analysis[14] of the retinal integration time shows, the eye can forgive
approximately 3–4 frames of artifacts and jitter before fully perceiving a
region change in full detail. Thus, short delays of full resolution frames after
eye movements are negligible.

Texture streaming The sampling is done completely on CPU to minimize
the bandwidth to the GPU. The interpolation map which contains a 1D index
for every sample on every (x, y)-coordinate is transferred to the GPU on the
initialization. As it is static and can be shifted by the eye view vector ~v, it
does not need to be updated. It is implemented as a GL_TEXTURE_2D, but
uses 1D 32-bit integer values instead of RGB float values, which results in a
isampler2D.

The sampling data is transferred to the shader as a usamplerBuffer.
These are 1D arrays containing single elements, but are addressed like textures
using methods as texelFetch(). Every element is addressed by an index and
contains a RGB 8-bit integer value based on its sampling results.

Using these scheme, the interpolation process is a simple chaining of
both texture lookups. For every 2D texture coordinate, there is a 1D integer
value inside the isampler2D. This 1D integer value is the index for the
usamplerBuffer array containing the sampling data for this point.

1 uniform isampler2D interpolationMask;
2 uniform usamplerBuffer samplingResults;
3 uniform vec2 eyeVector;
4 in vec2 texcoord;
5 out vec4 color;
6 [ . . . ]
7 int index = texelFetch(interpolationMask, texcoord - eyeVector).r;
8 color.rgb = texelFetch(samplingResults, index).rgb / 255.0;



32 Implementation

Figure 4.1: Widescreen framework flowchart: This flowchart visualizes the
video loading process. Based on the static acuity mask, a suitable mip-map
level for each video tile is determined. The video handler loads a frame
from every video tile, which is already seeked to the right frame and applies
sampling. In parallel, a thread for each unready tile is created for seeking
to the current frame. If the sampling thread is in idle, it starts using lower
mip-map levels in order to quickly finish the current frame. If any resolution
level is finished processing, the data is sent to GPU for interpolation and
rendering.

By implementing the masks as static data and chaining them in this way,
the shading has no overhead added through interpolation. The amount of
bandwidth used by this approach is at an absolute minimum, as only raw
sample data is transferred for every frame. This process is visualized in Figure
4.2.

4.2 Framework for 360-degree panoramic videos

This section shows the second iteration of development. The foundation is
based on the previous prototype discussed in Section 4.1. However, a majority
of the code has been redesigned to more efficiently adapt to panoramic videos.

As the previous framework already used a hybrid model and grid-based
pre-processing, the sampling-based approach seemed to be an unnecessary



4.2 Framework for 360-degree panoramic videos 33

Streamed	to	GPU

every	frame

once

0 0 1 1

0 2 3 1

4 5 6 7

4 4 7 7

ID X Y
0 15 12
1 46 56
2 89 96
… … …

0 1 2 3 4 5 6 7

0 0 1 1

0 2 3 1

4 5 6 7

4 4 7 7

Shading

Figure 4.2: Sampling-based frame reconstruction: This figure visualizes
frame reconstruction using two masks. The acuity mask is a list of sam-
ple points which are evaluated for each frame. In combination with a static
pre-calculated interpolation mask, the shader is able to reconstruct a full
frame.

drag. It can introduce various kinds of sampling-related issues and also result
in flickering and visual artifacts. Thus, the sampling-based approach has been
removed as it introduced a handful of unfortunate problems.

Due to the removal of the sampling-based techniques, the shading is
completely rewritten. Again, the implementation features an efficient way to
minimize texture streaming and reconstruct the frame linearly.

4.2.1 Data pre-processing

As the previous video-based approach introduced a number of issues with
multi-tasking, seeking the video and loading a high amount of video tiles at
the same time, this approach uses another data format.

Due to its simplicity in loading, picture files are used instead of videos.
Therefore, every video is split into single files per frame. Any format will
work, although JPEG appeared to be the fastest for decoding.

There are six picture files per frame. This corresponds to the panoramic
video being transformed to a cube-mapped projection. Every file is read and
sampled down to each mip-map level. Similar to the last approach, three
mip-map levels are used. Afterwards, uniformly sized cells are extracted and
saved as single files. For simplicity, every cube side gets their own uniform



34 Implementation

grid.
For a 4× 4 grid, this results in 288 files per frame. Due to the enormous

amount so files, they are saved in a folder structure based on their mip-map
level and grid cell. This step is purely optional, but facilitates file handling
operations within the operating system. This approach can be extended to
use some container file format, which might be more convenient, but has no
semantic impact on the algorithm by itself.

Additionally, every video tile is analyzed in terms of their RGB color
variance. This test is best done on the highest resolution level, as it contains
the most information about the frame. For later evaluations, a simple average
over the three color channels is used as a variance determinant. More advanced
approaches are possible, but skipped in order to keep this process simple. The
variance data is calculated in parallel and saved in a large matrix for later
usage.

The script is based on Python, utilizing Pillow 3.0[12] for image opera-
tions.

4.2.2 Acuity function

This approach redesigns the visual acuity algorithm in terms of its funda-
mental approach. While the previous algorithm was based on a direct math-
ematical sampling of each pixel and interpolating their values accordingly,
this approach acquires data based solely on lookups within the grid. The
data is read in chunks, which can usually result in faster access due to better
optimized library functions as well as cache efficiency.

The data pre-processing creates three mip-map levels for every grid cell
in the cube map. In order to select mip-map levels relating to the users’
viewpoint, the view vector based on data from the pupil detection is used:

1 side, axis calculateCubeside(vec3 eye):
2 switch eye:
3 eye.x > 0.5: return +X, X
4 eye.x <= 0.5: return -X, X
5 eye.y > 0.5: return +Y, Y
6 eye.y <= 0.5: return -Y, Y
7 eye.z > 0.5: return +Z, Z
8 eye.z <= 0.5: return -Z, Z

The function calculateCubeside can calculate the side of the cubemap,
on which the user is looking. Afterwards, the axis used for calculating the
current cube side is not longer used, but the other two axes contain informa-
tion about the grid. The grid is uniformly distributed over the surface of one
cube side. Thus, a simple division and rounding down to the nearest integer
returns the grid cell, or the video tile has data for this region. This example
uses a uniform grid with 4× 4 cells:



4.2 Framework for 360-degree panoramic videos 35

1 vec2 calculateGridPosition(vec3):
2 side, axis = calculateCubeside(eye)
3 otheraxis1 = (getAxisUnequal(eye, axis).a + 0.75) * 2
4 otheraxis2 = (getAxisUnequal(eye, axis).b + 0.75) * 2
5 return (otheraxis1 / 4.0, otheraxis2 / 4.0)

Using the knowledge about the users’ viewpoint, an algorithm will select
mip-map levels for each tile based on their position relative to the foveal focus.
Additionally, a saliency-based approach can use variance data to further
enhance the selection process. Note, that this has no further relation to the
users’ eye position, as this determinant is solely based on pre-processed data.
The following pseudo-code visualizes the selection process:

1 void selectMipmap(vec3 eye):
2 setquality(ALL, lowest)
3 // Grid-based acuity
4 vec2 fovealCell = calculateGridPosition(eye)
5 setquality(fovealCell, maximum)
6 foreach(neighborCell : adjacent to fovealCell):
7 setquality(neighborCell, halfway)
8 // Saliency-based acuity
9 foreach(noiseCell : cell near maximum(color variance)):

10 setquality(noiseCell, halfway)

Every cell is initially set to the lowest mip-map level. Based on the local
distance to the eye position, the setting is increased accordingly. Afterwards,
a saliency-based approach can be added to further enhance the results.

Notice, that this approach does not necessarily set tiles behind the user
black. Therefore, everything on the mip-map gets at least the lowest mip-map
level. This can have an impact on the overall performance, but helps in terms
of very fast movements. As a result, the user will always see a current low
resolution version of the video, even if turning their head 180 degrees.

When finished, this created a distribution as seen in Figure 4.3. This
information is saved in a acuity matrix and passed to texture loading and
streaming in order to render the video. As all calculations up to this point
are computable in linear time, they are no bottleneck and can be computed
for each frame. This way, there are no delays for eye movements to be used
within the texture loading.

4.2.3 Video handling

This section describes all steps relevant to video handling. As seen in Figure
4.4, a central element of this approach is the acuity matrix calculated in the
previous section. Using this, the video handler will load all relevant video
tiles and stream them to the GPU. Finally, the shader combines all tiles to
a full image.



36 Implementation

Figure 4.3: Mip-map selection for panoramic video: Based on the view pointer,
the algorithm selects a map of suitable mip-map values based on visual acuity.
White indicates a full resolution, light grey indicates a 1

4 resolution and dark
grey indicates a 1

16 resolution.

Video loading

In this framework, video data has been available as pictures series. Panoramic
videos were calculated from equirectangular data to a cube mapped format.
Therefore, there are 6 pictures per frame. The pre-processing algorithm has
created a set of mip-map values and their tiles per frame.

When removing the sampling based approach, there is no further need
for image-manipulation functions, as any loaded file can be directly streamed
to the GPU. Due to the nature of being very big and versatile libraries,
FFmpeg and OpenCV introduce an overhead. As a result, the loading methods
switched to stb_image as a lightweight alternative.

In most development phases, a 4 × 4 uniform grid has been use, as it
turns out to be the most efficient. There is one grid for each cube side, and
thus there are 96 tiles per frame in maximum resolution, and 288 tiles when
counting all three mip-map levels.

The amount of files to be read in parallel are a major bottleneck. How-
ever, pictures are easier to handle in these amounts, compared to video files.
Previously, Section 4.1 discussed challenges when decoding a vast amount of
video tiles in parallel and the need to parallelize this process. As it turns out,
this is less severe for picture files.

As every frame has his single file set, the operating system does not need
to keep as many files open at the same time. Opening a new picture is cheaper
than seeking to a new position in most video codecs. Therefore, file handles
can be closed conservatively, which also frees up resources.

In terms of parallelism, several approaches have been tested. However, a
sequential algorithm has similar performance than multi-threaded approaches.



4.2 Framework for 360-degree panoramic videos 37

Figure 4.4: Panoramic framework flowchart: This flowchart visualizes the
video loading process. Using on the acuity function, a matrix containing a
suitable mip-map level for each video tile is determined. The video handler
will load one video tile per grid cell and stream it to the GPU. The shader
can combine the picture based on the acuity matrix.

This is due to the nature of selected mip-map values. There is a maximum
of one tile in the highest resolution. Furthermore, a vast majority of the tiles
are loaded in tiny resolution levels. For a 12000 × 3000 video, the smallest
mip-map level has grid cells of 188× 188. These are very quickly loaded and
do not justify a complex threading system.

Video streaming

The video loading provides an array of video tiles in different resolution. This
means, for a cube map with a 4× 4 grid, there are 96 tiles.

There are three GL_TEXTURE_CUBE_MAP textures. Internally, OpenGL uses
an array of six GL_TEXTURE_2D, which would be semantically identical. Every
texture has a different size, corresponding to the pre-generated mip-map
levels.

During initialization, OpenGL filtering techniques and the built-in mip-
map functionality is deactivated as it wouldn’t fit this approach. OpenGL
would create own mip-map levels for the full texture on every update. As this
approach is streaming texture updates only in relevant regions, this behavior
is unwanted.

Using glTexSubImage2D, only relevant regions are updated each frame.
This command executes an update of a sub-image. That means, providing an
offset as well as a size, only relevant regions are updated per call. As this does



38 Implementation

Figure 4.5: Streamed texture levels: For every frame, only updated texture
data for every mip-map level are streamed to the GPU. The pictures display-
ing the transferred cube-map data for the maximum (top left), medium (top
right) and lowest (bottom) resolution. The grey area is not updated, and
thus either containing data of old frames or being uninitialized.

not trigger any OpenGL post-processing, it is the fastest way to dynamically
stream texture data.

In one frame, only one of the three cube-map textures is updated for every
video tile, according to its mip-map level. This will minimize the bandwidth
used for texture streaming. As shown in figure 4.5, only regions and mip-map
levels relevant to the visual acuity of this particular frame are updated.

It results in large parts of un-updated regions for every texture. This is
however intended, as the shading process can patch the frame together based
on the acuity matrix. Using the tiled approach for different resolution levels,
it resembles some ideas of the afore-mentioned talk by Microsoft[1].

Shading

The shader works very similar to the acuity function described in Section 4.2.2.
Hence, the GLSL code can use the same calculateGridPosition function
as described previously.

All three cube-maps are passed to the shader as cube-map textures. The
shaders are using 3D cube texture coordinates to simplify the calculations.
This is a trick, as now the texture coordinates passed into the fragment shader
are corresponding to the eye vector. When passing the texture coordinate
into calculatePosition, the grid cell corresponding to this video tile is
calculated.



4.3 HMD compatibility 39

Furthermore, a matrix with the grid cell to mip-map level mappings is
passed to the fragment shader. Using this data, the shader can use this as a
lookup table to decide, which cube-map is used for this texture coordinate.
This way, a dynamic switch between the textures based on their texture
coordinate is possible:

1 switch(lookupMipmap(calculateGridPosition(texCoord))):
2 == 1:
3 color = texture(skymap1, texCoord)
4 == 2:
5 color = texture(skymap2, texCoord)
6 == 3:
7 color = texture(skymap3, texCoord)

4.3 HMD compatibility

In order to be flexible with developing cycles, major parts of development
were executed without use of a HMD system. To reliably debug each approach,
visuals were rendered to a common computer screen. Pupil movements are
simulated by mouse movements, with the cursor being the center of the foveal
focus region. Head movements can also be simulated by adding keyboard
commands.

While pupil movements are a main concept for this thesis, head movements
don’t introduce any needed functionality. Large head movements will be
equivalent to large eye movements. Furthermore, there are small relocations
like breathing or nodding, where the eyes’ point of fixation might not change.
These can be solved by translating the whole rendering surface in (x, y)-
direction without any changes to the visual acuity process.

During finalization of this project, a rough port to a Windows-based
framework has been tested. With Oculus Rift[19] having Windows as one
of its target platforms, a sophisticated library for HMD solutions (so-called
LibOVR) was developed. Focusing on the Oculus Rift platform provides
functionality and driver compatibility for a number of HMD systems.

As previous approaches were written with portability in mind, adding
their code to new frameworks is easy. This way, support for connected HMD
systems is easily solvable by adding LibOVR.

While it has not been tested, stereoscopic rendering will presumably only
have a minor impact on the overall performance of the system. In case of
a sampling-based approach, the sample must be done twice. However, for a
grid-based approach, roughly the same grid tiles can be used. The loaded
mip-map levels as assigned by the visual acuity functions is roughly the same
for both eyes. Thus, there is no additional overhead introduced by the second
eye, in terms of video handling. Other parts of the algorithm are not as



40 Implementation

critical, when it comes to performance, so there are no bottlenecks to be
expected.

4.4 Optimization steps

This section discusses further optimization steps which have an impact on
the rendering quality as well as performance of each approach.

Mip-map selection based on image variance As discussed in Section
3.1.3, there are other determinants except visual acuity which can be intro-
duced. This way, the system can simulate the human vision system more
closely.

In order to test this approach, a naive method was implemented. In
the pre-processing step, each grid cells average RGB color variance value is
calculated and saved in a matrix format. Later, this data is read to modify
the mip-map decision step.

Using this, cells with an enormously high color variance are loaded in a
higher mip-map level to compensate for possible perception changes due to
resolution differences.

Blur To have a closer approximation of visual acuity, a radial gauss blur can
be introduced. This can be necessary, especially for the grid-based approach
from Section 4.2. While this approach ensembles an efficient way for video-
loading and pixel access, it creates a checkerboard pattern. With only three
mip-map levels in the current implementation, the jump between two mip-
map levels (as seen in Figure 4.3) is comparatively big.

Although these resolution jumps are only present in the corner of the eye,
they can create confusion. This can introduce hard edges on locations, where
no edges are to be expected.

Adding a blur can easily fix this drawback, removing edges in the corner of
the eye and therefore reducing possible points of distraction. It is important
to notice, that only regions out of the foveal center are blurred. Due to this,
the blur can only have an impact on the subconsciousness. The foveal center
will always be displayed in a maximum resolution without post-processing.

The blur is implemented and tested as a sole post-processing step, so
it does not change previous implementations. It is important to set up the
fall-off by the radial blur similar to the visual acuity function used by the
rest of the algorithm.

Performance The performance is variable and can be quickly modified by
changing the levels of mip-map. In the default setup, there are three levels of
mip-maps for full resolution, 1

4 resolution and 1
16 resolution. These parameters



4.4 Optimization steps 41

can be easily adapted to different scenes and have a high impact on their
performance.

The system tries to load a maximum of one tile with maximum resolution.
This is necessary as these tiles have an extreme impact on the frames per
second. It can be necessary to load multiple tiles when looking on edges. This
is a drawback of the approach and not avoidable. However, the algorithm
tries to minimize it.

The second mip-map level is not as critical, although it is still much
slower than the third. It is usually used for everything not directly in the
foveal center, but close to it. This means, all adjacent tiles are on this level.
Additionally, the variance-based approach adds further tiles to this mip-map
level based on color variances. This is a pure thresholding process and can
be adjusted as convenient.

Another optimization could add further mip-map levels. Especially for
panoramic scenes, adjustments in the rendering pipeline would be needed. The
current implementation uses a full cube-map for each mip-map level to easily
switch between the mip-map levels based on texture coordinates without
OpenGL texture functions interfering in terms of filtering and streaming
performance.

Due to this, there is an overhead in video RAM. This is negligible as
video rendering does not have other objects or textures to render. However,
a higher amount of mip-map levels will need additional video RAM. The
current implementation can render 12000× 3000 panoramic videos on 2 GB
video RAM utilizing up to three mip-map levels.



42 Implementation



Chapter 5

Evaluation

This chapter discusses an exhaustive evaluation of all approaches and available
options presented in the previous chapters.

First, Section 5.1 gives an overview of hardware and software environment
used for these analyses. Everything used for implementation and testing are
consumer-grade devices and every library is freely available. This makes the
frameworks easily portable. Next, Section 5.2 discusses the pre-processing
step used for both frameworks. It is analyzed in terms of storage usage as
well as runtime. The pre-processed data is loaded based on different design
decisions evaluated in Section 5.3. Based on their video codec or image
format, a variety of performance footprints are analyzed. Afterwards, the raw
performance is analyzed in Section 5.4. This gives a good overall view on
the algorithm and its strength. Lastly, the short Section 5.5 will summarize
perception differences based on their resolution settings.

5.1 Test environment

This section will describe the test environment all evaluations have been
measured in.

In Section 5.1.1 the hardware environment is described. Only common
consumer-grade devices are used. Next, Section 5.1.2 describes the software
environment used. Both frameworks were developed in a UNIX environment
and solely use libraries with free licensing. Lastly, Section 5.1.3 describe test
scenes used.

5.1.1 Hardware

The evaluations are done on a MacBook Pro with a 2,5 GHz Intel Core i7
Haswell CPU and 16 GB DDR3 RAM. Although there is a vast amount of
parallel encoding processes, the CPU has only a minor impact on performance.
More importantly, all calculations are done on a SSD drive.



44 Evaluation

The grid-based approach results in a high amount of data-accesses on
different parts of the hard disk. As longer videos can result in a high amount
of storage usage, it would not be viable to pre-cache everything in RAM.
Furthermore, as eye movements can dynamically change, there is no way to
reliably assume which video tiles are necessary in the next frames.

This results in a very high amount of disk accesses, more specifically a
high amount of accesses on different regions of the hard drive. Therefore,
using this approach with older hard disk drives using rotating disks is not
possible. They would introduce a delay of the moving elements to retrieve
different sectors, in contrast to the simultaneous accesses possible with a SSD.
This is not sustainable for this approach. This limitation is however negligible,
as SSD drives are standard in most consumer level devices nowadays.

The graphics card is an NVIDIA GeForce GT 750M with 2 GB of video
RAM. As both approaches have a very low amount of actual data bandwidth
and the shader code for reconstructing the frames on GPU are limited, there
is no relevant bottleneck when it comes to processing power of the GPU.
Therefore, any model capable of OpenGL 4.1 is sufficient.

However, a high amount of video RAM can be necessary for especially
the framework for panoramic videos. It is implemented using multiple high
resolution cube maps. This results in a high memory footprint on the GPU
and can be optimized with a more sophisticated texture model, but memory
efficiency has not been focus of this project.

As HMD usage has been simulated, no further hardware is required. The
HMD port described in Section 4.3 uses an open library called LibOVR[19]
for driver accesses and providing an extensive API for HMD. Therefore, a
usage within HMD systems is possible for any device supporting this API.

5.1.2 Framework

The frameworks described in Chapter 4 were implemented as described and
tested within Mac OS X 10.11.3. In terms of libraries, SDL 2.0[44], OpenGL
4.1, OpenCV 3.1[35], FFmpeg 2.8.6[21] and STB Image 2.08[7] were used.

Both frameworks are analyzed in terms of their individual settings. As
every framework uses different approaches to solving the problem, the evalua-
tion differs slightly. However, providing an extensive view on different design
decisions is in the focus here. Thus, comparisons are made where applicable.

The port to a HMD library is completely based on the implementation of
the panoramic video framework. Therefore, evaluations for this port have no
relevant impact on the analyses. As a result, the port to windows has been
excluded from extensive testing, as every measurable parameter is already
presented within the other evaluations. As discussed earlier, the mouse po-
sition is used as an input data for the acuity-based algorithms. This means,
eye position is simulated by user input.

As an abbreviation, from this on, this chapter uses Framework 1 for the



5.1 Test environment 45

first implementation using wide-screen videos with video files and a hybrid
approach for factoring in visual acuity. Respectively, Framework 2 is used
for the second implementation featuring panoramic videos with a solely grid-
based approach and image files.

5.1.3 Scenes

As most evaluations are based on performance, storage and bandwidth usages,
the contents of the videos only have a subsidiary influence on each analysis.
Despite some variance-based approaches discussed in the optimization step
(Section 4.4), no part of the algorithms is influenced by the video contents.

For the purpose of evaluating different approaches, free scenes from vari-
ous internet platforms were selected. As Creative Commons videos in a 8K
resolution are rare, upsampled data has been used to simulate performance
behaviors.

For all three scenes, three distinct mip-map levels are used. The mip-map
levels are full resolution, the 1

4 resolution and the 1
16 resolution. The grid is

4× 4 when not other specified.

Scene 1: wide-screen video Caminandes

This scene Caminandes (see Figure 5.1) is a video produced as an open
project of the Blender Foundation[22]. It is licensed with Creative Commons
and thus freely available. The original video is 1:30 minutes and shows a
small story about a llama trying to pass a street.

As 4K is the highest resolution available for this video, it is scaled up
to 8K and 16K for the purpose of these evaluations. This obviously can not
result in an increased quality without at least a post-processing step. However,
evaluations regarding performance, storage and bandwidth can be simulated
realistically for these video sizes.

It is originally available in h.264. For the evaluations the video is addi-
tionally re-encoded to VP 8, VP 9 and h.265, as tests using multiple codecs
are necessary.

Regarding pre-processing, a 4× 4 grid is used for 8K and a 8× 8 grid is
used for 16K.

Scene 2: panoramic video Inside the GI tract

This scene Inside the GI tract (see Figure 5.2) is an educational 360-degree
video[34]. It is licensed with Creative Commons and thus freely available. It
shows a flight through the human body, which makes it a good example in
context of virtual reality.

The video was already provided as cube-maps in a resolution of 960×960
per cube side. This is scaled up to 4096×4096 per cube side for the purpose of
these evaluations. This means, the upscaled panoramic video is 16384× 6144.



46 Evaluation

Figure 5.1: Scene 1: wide-screen video Caminandes

It was available in PNG format, but is re-encoded to JPEG for performance
reasons.

For most analyses, a subset of 100 frames are used. This allows an easier
rough estimate for larger scenes in terms of storage usage and other measure-
ments. The length of the scene has no relevant impact on the performance.

Figure 5.2: Scene 2: panoramic video Inside the GI tract

Scene 3: panoramic video Christmas market

This scene Christmas market (see Figure 5.3) is an internally shot scene of a
German christmas market, using six GoPro cameras[24] in a 360-degree array.
The scene shows a typical town square scene with people walking around and
different visual depths due to small houses and booths. It originally consists
of 221 frames, but was reduced to 100 frames.



5.2 Pre-processing data 47

As a special property of this scene, it does not feature a top and down
view. Therefore, the ±Y cube sides are not used and can be skipped for
performance reasons.

The raw data has a format of 12000 × 3000, resulting in a cube-map
of 4 faces, each 3000 × 3000. It is originally in PNG format, but will be
re-encoded to JPEG for performance reasons.

Figure 5.3: Scene 3: panoramic video Christmas market

5.2 Pre-processing data

When being guided by the flowchart in the beginning of Chapter 3, there
are three main pillars this approach is based on. The evaluation is roughly
executed in the way of data flow. First, raw data is pre-processed into an
easily loadable format. It consists of a uniform grid and mip-maps for each
video tile.

Grid and mip-map The grid size has a minor impact on performance. In
small scale tests, it seems to be a trade-off, as a bigger grid size results in much
more files to read and decode simultaneously. Thus, a choice between 8× 4
and 4×4 for wide-screen videos results in an almost identical performance, or
during eye movement it might be even slightly slower. While the grid adapts
more closely to the nature of wide-screen videos, the amount of parallel open
video tiles is also doubled.

On the other side, a very small sized grid can also harm the acuity ap-
proach as it increases the size of a video tile. This defines how quickly the
visual acuity can decrease. A very small grid size results in big areas of the
same mip-map level loaded.



48 Evaluation

The number of mip-map levels were set accordingly. Two mip-map levels
are too few to successfully adapt to visual acuity within the gaze-contingent
rendering approach. The first tests were rendered using up to six mip-map
levels. It turns out that within the perceptual vision region the lowest mip-
map level is almost always sufficient. Furthermore, the central vision region
is simply not large enough to successfully allow more than 2 different levels
of grading for a grid of size 4 × 4 or 8 × 8. Thus, three mip-map levels are
an ideal choice.

Pre-processing step by itself For Framework 1, all video codecs use
the recommended settings for high resolution data. Usually, this means the
slowest preset combined with a sufficient bit rate. Thus, it uses 10 mbit/s for
full resolution video tiles (roughly 1080p), 5 mbit/s for the medium mip-map
level (roughly 240p) and 2 mbit/s for the smallest mip-map levels (lower than
100p).

Due to the overhead in redundant data, these process can vastly increase
the amount of storage used by the videos. As shown in Figure 5.4, the input
data has further influence on this ratio.

In the first framework, storage used is around six times larger, due to
additional mip-mapping and grid data. In Framework 2, the storage is actually
decreasing by around 50% when using JPEG files. This is due to the change
of the image format necessary for performance. While PNG has a stronger
compression and is providing lossless image data, JPEG generally produces
smaller files. The smaller mip-map levels have a very small impact on the
overall storage as described in Table 5.1. The addition of two new mip-map
levels just increases the overall storage up to 20%.

Note, that scene 2 is much smaller than scene 3 despite the higher res-
olution. This is due to the characteristics of the scene, as it is one-sided in
terms of color variation. Thus, it is better compressible.

Approach Mip-map 0 Mip-map 1 Mip-map 2
Framework 1 (Scene 1) 1885 MB 365 MB 46 MB
Framework 2 (Scene 2) 721 MB 81 MB 14 MB
Framework 2 (Scene 3) 3520 MB 463 MB 92 MB

Table 5.1: Data usage per mip-map: This table visualizes the data used for
every mip-map level. This data is evaluated for one video codec and image
format per framework, as there is no significant change in the relative distance
between mip-maps depending on their format.

Unfortunately, the pre-processing step itself has a high runtime. This is
however tolerable, as it has no influence on the performance of the rest of
the system and is only done once per video. Depending on the video codec
or image format, the time can vary. An overview is shown in Table 5.2. For



5.2 Pre-processing data 49

Figure 5.4: Storage usage: This graph shows the difference in storage used by
video data before and after pre-processing. The Framework 1 (left) refers to
the wide-screen video approach. An increase in storage is natural, as the mip-
map and grid data introduces a big overhead in video files. The Framework 2
(right) refers to the panoramic video framework. There is a striking reduction
in video storage. This is due to a re-encoding from a lossless format (PNG)
to a lossy format (JPEG) due to performance reasons. This had no visual
impact on the rendering.

runtime analyses, VP 8/VP 9 unfortunately come with a very high overhead
in encoding speed. While h.265 is already about three times slower than h.264,
the VP 8 is about 8 times slower and VP 9 around 16 times slower. For the
image formats, PNG turns out to be two and a half times slower than both
JPEG variants. This is reasonable, as it is the only lossless format, which
results in a more complex compressing algorithm. In terms of storage usage,
all results seem reasonable. The H.265 can tremendously decrease video size.
The high quality JPEG setting ironically uses more space than the lossless
PNG due to re-encoding.

Notice, that the pre-processing was done in a single-threaded manner.
Depending on the codec, it might be more efficient to use a multi-thread
model. Some codecs, like h.264/h.265 already use multi-threaded encoding
by the FFmpeg library. Optimizations within the pre-processing part have
no priority, so this is not further tested.

To summarize, the first pillar of data flow, pre-processing, has an impact



50 Evaluation

on storage and has a high runtime by itself. The focus of the project is real-
time rendering of the video streaming and the reduction of actual bandwidth.
Therefore, there are no restrictions on pre-processing runtime or storage
usage, as long as they are reasonable.

Approach time spent storage used
Framework 1: VP 8 3 h 58 min 3237 mb
Framework 1: VP 9 8 h 17 min 2294 mb
Framework 1: h.284 36 min 1923 mb
Framework 1: h.285 1 h 30 min 104 mb
Framework 2: PNG 50 min 1608 mb
Framework 2: JPEG q=90 17 min 816 mb
Framework 2: JPEG q=100 21 min 2500 mb

Table 5.2: Ressource usage for pre-processing: This table visualizes the time
and storage used for pre-processing videos. The numbers of Framework 1 are
using the first scene (1:30 min, 8K). For Framework 2, it references scene 2
(100 frames, 16K). It scales roughly linear with other video lengths.

5.3 Video handling

After evaluating data pre-processing, handling the video data is the next step
to look at. This section does not directly analyze parts of the algorithm, but
rather underlying technologies.

Depending on the framework, video data can be loaded in various different
formats, which are analyzed in Section 5.3.1 and Section 5.3.2, respectively.

Finally, the Section 5.3.2 gives a broad analysis of actual used bandwidth,
video memory and GPU processing power. The exact amount of pixels trans-
ferred to the GPU for each frame is discussed and compared to the full
resolution. This shows the real bandwidth advantage of visual acuity as an
approach to video streaming, which was one of the key motivations of this
thesis.

As a side note, this evaluation assumes most decoding to be fully done on
CPU. The underlying library FFmpeg is not capable of GPU acceleration for
most codecs. A GPU acceleration could greatly improve the loading speed, as
the GPU is mostly unused and would have spare processing power available.

The key conclusions drawn from this part of the evaluation are related
to bandwidth usage and the way texture streaming was implemented. These
parts are unrelated to the video loading process and therefore remain true
for other codecs or image formats.



5.3 Video handling 51

5.3.1 Video codecs

An analysis of different video codecs is visualized in Figure 5.5. This shows
the performance deviations when switching codecs due to different decoding
speeds. The error bars try to visualize stuttering due to eye movements.

All codecs result in a similar speed with the VP 8 and VP 9 codecs having
a slight advantage. However, there are several things worth mentioning, which
can not be reflected in the diagram.

The h.264 has various significant issues with frame-perfect seeking. This
seems to be an open issue for both the current version OpenCV and FFmpeg.
Due to this, it is not possible to implement a frame-perfect seeking using the
available API.

Every call has a chance to seek to a close frame, which might be one or two
frames away from the actually requested frame. This unfortunate behavior
can create visual gaps between video tiles, as they a rendering different frames
of the original video. This however does not correspond to an inter frame (or
i-frame), which is an internally used frame within the codec. Inter frames are
added to provide redundancy by duplicating full frame information in certain
intervals while encoding. These issues are measurable even if the codec is set
to save an i-frame for every single frame. Thus, it seems to be a bug within
the decoding process. There is an open bug ticket for OpenCV regarding this
behavior[58].

Additionally, this is not consistent through all video tiles and can vary
based on the frame. As a result, h.264 produces regular flickering and hard
edges when loading wrong frames for adjacent video tiles during scene changes.

In h.265, similar issues were noticeable, albeit less severe. The h.265 API
and functionality does not seem as well implemented within FFmpeg, which
is due to h.265 being a closed standard. Unfortunately, h.265 decoding also
introduces a massive stuttering, which furthermore rules out this codec.

Overall, VP 8 and VP 9 seem to perform very well, both in terms of
performance and the amount of issues and hiccups surrounding the multi-
threaded tiling approach. There is no major difference between these two, but
VP 9 performs best in terms of performance deviations and stuttering due
to eye movements. Thus, VP 9 is the codec of choice for other evaluations.

5.3.2 Picture formats

For Framework 2, the data format of choice switched to picture files, which
makes a second evaluation regarding the file format necessary. The perfor-
mance for different formats is shown in Figure 5.6. The figure shows aver-
age performance when rendering the acuity approach with different formats.
JPEG turns out almost as twice as fast as PNG when using q = 90 setting.
The maximum setting q = 100 is slightly slower, but still around 70% faster
than PNG.



52 Evaluation

Figure 5.5: Performance for different codecs: This graph shows performance
changes when using different codecs for decoding the video tiles. It is purely
based on the performance, and different codecs can have additional draw
backs not reflected by this graph, as discussed in section 5.3.1. The error bars
show performance derivations due to eye movements, as the video handler
receives a sudden peak of data to process.

Notice, that PNG is a lossless format. Standard JPEG is always lossy,
even at quality set to the maximum. There is a lossless variant, but it was not
tested as it is uncommon and thus not well implemented in most libraries.

There are other interesting formats like TGA, TIFF or DDS (among oth-
ers), which are possible candidates for this approach. However, most imaging
libraries can not handle these files properly. Usually, these formats can not
be saved, and even the loading methods are much less optimized. Due to this,
they are skipped in these evaluations.

5.3.3 Texture handling

The previous section described the loading of video files, where the algorithm
does not use the GPU. In contrast, the following section will describe all
interfaces to the GPU. The CPU/GPU interface is where bandwidth will
play a key role. Furthermore, the memory footprint and necessary GPU
processing power are ought to be analyzed to get an informed knowledge of
the system.



5.3 Video handling 53

Figure 5.6: Performance for different codecs: This graph shows performance
changes when using different image formats for decoding the video tiles.
This just shows differences in performance without factoring in quality. For
example, while PNG is slower, it always provides a lossless decoding, while
JPEG is not. The tested scene is scene 2.

Bandwidth Both approaches are mainly designed to result in a data band-
width as minimized as possible. The results are shown in Table 5.3. It analyzes
the pure pixel data transferred to the GPU. This is unrelated to the previously
decoded video data, as not all decoded data is necessarily also transferred to
GPU.

The Framework 1 shows the highest decrease possible based solely on
visual acuity. As a result, a reduction to 2 percent of the maximum band-
width is possible. The sampling-based approach results in a mathematically
optimized minimum of bandwidth. However, sampling-errors and slow single
based pixel accesses are a major drawback.

Despite the grid-based approach being only a very rough estimate of the
acuity function, the Framework 2 can show almost comparable bandwidth
results averaging between 2.9 and 4.9 percent. This is due to the nature
of panoramic videos, where a whole 360-degree surface is rendered. Thus, a
high amount of bandwidth is saved in corner regions which are relevant for
fast head movements. Notice, that the saved bandwidth in the foveal focus
region is less optimal as the grid-based approach can as efficiently adapt to
the scene.



54 Evaluation

The evaluation for Framework 2 is describing an average frame. Depending
on the grid size and the gap between mip-map levels, it might be advisable
to have a more conservative rendering in order to decrease possible artifacts.
In this case, the algorithm can render multiple video tiles in the highest
resolution when being close to edges of a grid cell. Using this, the bandwidth
naturally increases. A worst case scenario using this approach results in a
bandwidth of 7–8 percent. This is the case if the eye vector points directly on
the edge of four adjacent grid cells. However, this is rare and in most directions
a rendering of one or two tiles in the highest resolution is sufficient.

This greatly reconfirms results of other publications[4][29], which analyzed
bandwidth savings to have a very similar order of magnitude.

transferred percentage
Sampling-based acuity (1080P acuity mask) 690926 2.08
minimum resolution (smallest mip-map) 129600 0.39
full resolution (8K wide-screen) 33177600 100
Grid-based acuity (with variance) 1773229 4.93
Grid-based acuity (without variance) 1043483 2.89
minimum resolution (smallest mip-map) 212064 0.59
full resolution (12K panoramic) 36000000 100

Table 5.3: Amount of pixels transferred: This table visualizes the amount of
pixel data transferred by these approaches. The upper rows describes Frame-
work 1, where all results are constant. The lower part describes Framework
2, where Grid size or the view direction can have a further impact on the
results. Therefore, the table indicates average case, which is close to the best
case. The worst case can increase the bandwidth of the grid-based approach
to around 7–8 percent.

Video RAM The Framework 1 has a huge decrease in video RAM usage
compared to a normal video rendering. A normal video surface would use a
texture of the full video resolution. Compared to this, the highest texture
used in this framework is the interpolation mask at a size of 1920×1920. This
is obviously a rough approximation for interpolating a 8K area. However, it
can be scaled accordingly and does not need to be very detailed for corner
regions. Due to this, the memory usage is a mere 12 percent of the classic
memory usage.

On the other side, the Framework 2 has a slight increase in video RAM
usage. The use of multiple cube maps for reconstructing the frame within the
shader results in a natural increase of memory usage. A normal panorama
would only use one cube map. As the resolution of the lower mip-map levels is
very decreased, the impact is however negligible. Thus, it reaches a maximum
of a 7 percent increase compared to a classic cube map. A comprehensive



5.4 Performance 55

view on this data is shown in Table 5.4.

data (MB) percentage
Acuity mask 2.76 0.69
Interpolation mask 44 11.06
total used by approach 46.76 11.75
total classic video surface 398 100
Cube map (high resolution) 1152 100
Cube map (mid resolution) 72 6.25
Cube map (low resolution) 4.5 0.39
total used by approach 1228 106.64
total classic cube map 1152 100

Table 5.4: Amount of memory usage: This table visualizes the amount of
texture data in use. This directly translates to the usage of video RAM. The
upper part assumes a wide screen video with a size of 8K. The lower part
assumes a panoramic video with a size of 16K.

Shading Despite it being hard to quantize the amount of shading power
used by an algorithm, it is worth noting that no complex shading algorithms
are used. Both frameworks fully rely on linear operations per fragment and
combining multiple look up tables to successfully reconstruct the full frame.

This ensures, that there is no additional computation overhead added on
the GPU. This leaves most GPU computing power unused and available for
decoding if applicable. Furthermore, more advanced post-processing shaders
are possible.

Naturally, the Gauss blur post-processing which is a possible optimization
for the Framework 2 can have an impact on shading performance depending
on the kernel size.

5.4 Performance

This section will evaluate the overall performance of the frameworks. After
the analysis of actual transferred bandwidth in Section 5.3.3, this is the second
most important data.

The results will show how smooth the implementation can render and
stream a video. Based on the previous results, each framework is tested with
the most promising set of options and codecs.

The overall goal is a performance higher than 25 frames per second (fps)
for each scene. This would allow a real-time rendering for most videos, as 25
fps is the most common video format.

Notice, that the rendering is not capped to the actual speed of the video.
Therefore, a faster rendering would result in the video playing faster than



56 Evaluation

recorded. This behavior is implemented purely to analyze the performance
capabilities of each system and can be changed easily.

5.4.1 Framework for wide-screen videos

There were no usable video data available in 8K or 16K formats. Therefore,
the wide-screen scene Caminandes is upscaled accordingly for these measure-
ments.

The VP 9 encoding has the most promising result, as it suffers the fewest
amount of issues with the multi-threaded model and overall algorithm design.
Unfortunately, h.264 and h.264 had various issues with seeking, which were
not fully resolvable. Thus, they are excluded from these overall analyses.

The framework can perform easily on real-time videos, as shown in Figure
5.7. For both the 8K and 16K scene it has a smooth performance of around
60 to 40 fps respectively. This means, it is fast enough to even have idle times
when processing 25 fps video. This allows catching up of eye movements and
other changes to the view port. Furthermore, videos in 60 fps are almost
playable in real-time for 8K videos.

Note, that there might be small delays and lag spikes when moving the
eye position. Every eye movement results in a sudden queue of video files
to seek, which the algorithm tries to handle it efficiently by relying on old
resolution levels in parallel to new frames being loaded. This can result in a
higher workload for the CPU to handle shortly after an eye movement.

The approach seems to scale reasonable, making it well suited for higher
resolutions in newer hardware. For VP 9 videos, as the error bars in 5.5
suggest, stuttering effects are limited and it can maintain steadily maintain
25 fps during slowdowns

5.4.2 Framework for panoramic videos

This framework can render panoramic videos in real time, as shown in Figure
5.8. Using the acuity approach, both scenes can easily reach 29 and 31 fps
respectively. In contrast, a render of the full resolution has less than 1 fps. It
results in a frictionless rendering of a 360-degree surface around the viewer.
Thus, it provides a good example for the capabilities for panoramic videos
within a HMD system.

For providing a fast loading speed, only JPEG-based data is used. This
is a performance trade-off. For these tests, a high quality setting of q = 90
has been used. The switch from PNG to JPEG has no noticeable visual
differences.

The results are post-processed with a radial blur filter to smooth out possi-
ble rendering issues. This radial blur filter renders faster than the underlying
video loading process, so it does not influence the overall performance.



5.5 Perception 57

Figure 5.7: Performance for wide-screen videos: This graph shows the per-
formance using different mip-map settings for the wide-screen scenes. Full
references to a full resolution of the cube-map. Minimum is a render of the
smallest mip-map level available. It corresponds to a rendering in 540p (for
8K) or 1080p (for 16K) using the same approach. This is results in a very
low resolution and can render over 100 frames per second depending on the
scene. Thus, it is not fully displayed within the chart. Simulated acuity uses
the acuity mask and gaze-contingent rendering to increase performance with
a minimum impact on perception. Its perceived resolution should equal full.

5.5 Perception

The current implementation unfortunately suffers from various small render-
ing issues which can have a slight impact on the viewers’ perception. An
example of possible artifacts is shown in figure 5.9.

Framework 1 Framework 1 utilizing sampling-based acuity has typical
errors due to the nature of sampling. As described by the Nyquist theorem[65],
such errors are only avoidable for a sampling frequency higher than double
the information frequency. However, in a radial decreasing function, it is
unavoidable to reach this at some point.

While the interpolation tries to fill the gaps with reasonable data, the
static approach can not fully fix sampling issues. This can result in flickering
noticing from the corner of the eye. An additional post-processing step with
an additional gauss blur helps in terms of reducing the perception of an



58 Evaluation

Figure 5.8: Performance for panoramic videos: This graph shows the per-
formance using different mip-map settings for both panoramic scenes. Full
references to a full resolution of the cube-map. Minimum is a render of the
smallest mip-map level available. This results in a very low resolution and
can render at up to 150 frames per second depending on the scene. Thus, it is
not fully displayed within the chart. These show the minimum and maximum
performance for each scene, and the gaze-contingent rendering will be any-
where between both limits. Simulated acuity uses gaze-contingent rendering
to increase performance with a minimum impact on perception. Its perceived
resolution should equal full.

artifact.

Framework 2 Framework 2 fully utilizes grid-based approaches for stream-
ing the data. This can unfortunately result in hard edges on the border of
two grid cells. This is not avoidable, as the data is pre-processed and the
edge can not dynamically move with the movements of the eye. In the worst
case situations, that means, the eye view vector is close to a grid edge, this
is an issue. It can lead to a perceivable quality gap.

This can be adjusted by loading additional tiles in a higher resolution.
However, this is a trade-off between performance and quality, which needs to
be adjusted on the scene and the viewers’ preferences.

Another option is using a higher resoluted grid like 8× 8 or 16× 16, or
the usage of more mip-map levels. For this framework, there is no additional



5.5 Perception 59

Figure 5.9: Rendering artifacts: These pictures show possible rendering arti-
facts for both frameworks. Framework 1 (left) has flickering edges due to the
interpolation mask. Framework 2 (right) can introduce hard edges relatinng
to the transition between video tiles of different resolutions.

computational overhead due to more mip-map levels, as there is no need for
video seeking when using single image files. Note, that mip-map levels will
still have an impact on the video RAM and of course the pre-processing step
in terms of storage and runtime.

Additionally, a radial gauss blur in a post-processing step smoothes out
edges and makes the scene more aesthetically appealing. It is configured to
approximate the acuity function.

Variance approach The current version of variance does have a minor
impact on the perception. Some complex regions of the video are given
a higher resolution, which results in a slightly lower amount of artifacts.
However, in RGB color space this approach does not seem to be overly
reliable, as there are other regions ought to be affected by this, which the
algorithm does not detect successfully.

As discussed earlier in Section 3.1.3, other color spaces especially devel-
oped to model human perception like HSV or LAB as well as approaches using
detection of meaningful edges, might further enhance this idea. However, this
was not further evaluated and is left open for future work.



60 Evaluation



Chapter 6

Discussion

This chapter will thoroughly discuss the result of previous design and imple-
mentations. Based on Chapter 5, a great insight on the overall performance
as well as different settings for each framework are known. However, each
approach has their individual drawbacks and limitations. In Section 6.1,
promising ideas and untested approaches for future work are presented.

Framework 1 Due to limitations in video and picture access, it is not viable
to develop a solely sampling-based approach. However, the wide-screen video
framework shows the capabilities of an efficient hybrid approach involving
both sampling-based pixel access and a grid-based video loading.

Despite the sampling approach not being suited well for video data, an
efficient multi-threaded loading scheme based on pre-processed video tiles
was built for wide-screen videos. The data was processed in a way suiting the
infrastructure of GLSL shading language. This results in an efficient shading
with no added overhead through sample interpolation.

The bandwidth reduction is around 98 percent and constant, as it is fully
based on the mask sizes. However, the masks can be changed easily and thus
the algorithm is able to adapt to different bandwidth requirements.

Framework 2 The second approach involving panoramic videos showed
capabilities of a full implementation based on grid-based approaches.

Furthermore, a sophisticated framework for 360-degree videos was imple-
mented. It utilizes a dynamic visual acuity function and a picture loader.
Only visible mip-map tiles were transferred to GPU to minimize bandwidth
without sampling. Video data was then combined on GPU based on previ-
ously determined acuity matrices. To limit rendering artifacts and give a
stronger impression of visual acuity, radial blurs turned out to be a cheap
and efficient optimization.

Based on this, a panoramic video with a real resolution of 12000× 3000
pixels could be rendered in real time. The bandwidth is reduced tremendously,



62 Discussion

which makes image loading a new major bottleneck. Using the grid acuity
approach, the reduction of bandwidth averages around 97 percent, but still
stays over 92 percent in a worst case scenario. When introducing saliency-
based techniques like using color variance, this number may increase.

Tile size and mip-map levels During all evaluations except one, a solid
grid size of 4×4 and three mip-map levels were used. For the 16K wide-screen
video a 8× 8 format was used. Prior to evaluations, there were various tests
using different grid sizes. Unfortunately, the length of the pre-processing,
especially for the VP 9 codec which is mostly used, makes thorough testing
stressful.

For Framework 1, a very high grid size has a major impact on the per-
formance. While it would be possible that a higher resolution grid is always
better as the gaze-contingent rendering can adapt more easily for higher grid
sizes, this does not hold true. The amount of grid cells directly corresponds
to the amount of open video tiles multiplied by the amount of mip-map lev-
els. Thus, additional grid cells introduce a higher amount of stuttering and
can quickly over-exert the CPU with decoding processes. This can introduce
various stuttering effects for larger grid sizes.

When using three mip-map levels, a 8×8 grid already has 192 open video
files while a 4× 4 grid only has 48. Each video stays open for a reasonable
time as it is more efficient in terms of seeking. Furthermore, for every eye
movement 16 (for 4×4) or 64 (for 8×8) video tiles need to seek. This results
in the same amount of parallel decoding processes for each frame. Due to
this, it can often be faster to use a smaller resolution grid, even if it can not
adapt as well to the gaze-contingent rendering approach.

Framework 2 has less impact by a higher grid size. When loading single
picture files instead of full videos, there are no issues regarding seeking video
material and providing the correct frame. However, there is still an impact as
there is a higher amount of video tiles to be decoded. For a higher resolution
grid, a single video tile has a lower resolution. However, the decoding process
does not necessarily scale linear to resolution in terms of performance. Thus,
there is a sweet spot when it comes to balancing the grid size for each format.
In cube maps, every cube side is exactly quadratic. This means, an identical
width and height per cube side is reasonable.

On the other side, a very low grid size is also unfavorable. For a 2×2 grid,
it would not be possible to use gaze-contingent rendering. As an example, a
view into the middle of the video (where all 4 cells of a 2× 2 grid intersect)
would need to render a full resolution frame and thus making the approach
ineffective.

For mip-map levels, there were also design decisions to be made. Obviously,
there is a need of at least two levels. While two levels can already simulate
the fall-off between center vision and the peripheral vision quite closely, it



63

is simply not necessary to load the full resolution for the full central vision
region. Due to the linear fall-off[47] along the central vision, it is possible to
add further sub levels.

The choice of three mip-map levels for the evaluation directly corresponds
to the grid size of 4× 4. For a 4× 4 grid there is not enough room to exploit
more than three mip-map levels. Previous tests with up to six mip-map levels
have shown, that three is a very efficient size.

Within the focal point and roughly 5–10 degrees around it, the highest
level is always preferable. Furthermore, the peripheral region does not need
further sub levels and can always be rendered within the lowest level available.
For all zones in between, usually one further mip-map level seems sufficient.
However, to smooth out hard edges and possibly other artifacts, introducing
a forth or fifth mip-map level and a slightly higher grid size could overall
improve perception with a minor impact in performance.

Perception This approach could show the great capabilities both in terms
of performance and bandwidth reduction. The human perception has been
judged subjectively, as no extensive user study has been performed.

Depending on the used video format, the algorithm has almost no stut-
tering during movements. This is a great success, as stuttering could harm
the perception[42].

Unfortunately, there are various artifacts and sampling errors which can
result in flickering effects and strong perceivable edges within the peripheral
region, as shown in Section 5.5.

As perception is strongly user-dependent[81], it is not viable to simply
judge the results in terms of perception without a user study. A perceptual
study is necessary to successfully conclude the overall perceptual results of
this approach.

Afterthoughts Amajor disadvantage of this approach is the pre-processing
step. A playback of new videos is not possible without at least creating the in-
termediate data format giving access to both a uniform grid and mip-mapped
data. This creates a vast overhead of storage, which is necessary to access
video data in chunks. Without this, every frame would need to be decoded in
full resolution. This would create an infeasible load on the CPU, which would
render real-time performance on current hardware impossible. In terms of
performance, the pre-processing is a one-time process, making it negligible
for the user.

Both the sampling-based and the grid-based approaches for factoring in
visual acuity has been tested exhaustively, in form of hybrid approaches.
Variance-based approaches were designed and tested lightly. A determinant
based on RGB color space variations could have slight improvements on the
quality of mip-map selections.



64 Discussion

6.1 Further ideas

The approach incorporates a broad view of options available to solving actuiy-
based video streaming. Of course, not every idea and design decision could
be tested exhaustively. Therefore, the following gives a summary on open
questions for this topic.

Storage optimization To reduce storage usage, approaches from video
games to save texture space could be applied. When saving the data in a
more compressed format, the storage will decrease. However, this will likely
be a performance trade-off, as higher compression or more sophisticated data-
packing usually also increases complexity. As the focus of the thesis has been
real-time performance, this has not been further investigated.

Video and image formats The evaluations are all based on standard
video and picture formats. Currently, there are no promising formats better
suited for this usage. H.265 seems to be a step in the right direction and
future formats building on it might have functionality which help for this
approach. However, they are currently closed formats and are thus not well
implemented in freely available libraries and frameworks commonly used in
research.

In order to decrease the amount of files, a container format can be added.
This makes file handling and pre-processing more convenient, but has no
promising effect on the overall performance.

For video games, special picture formats for fast loading of high resolution
textures are in development. In current evaluations, there was no format
available which could beat standard JPG in loading speed

storage -ratio. TGA and TIFF
are still used in modern video game engines, but seemed to be not well
supported by most libraries. These among other rare formats can be evaluated
more extensively.

Another option are graphics cards formats like KTX[28] for OpenGL. The
current approach uncompresses other formats like JPEG or various video
codecs to work on uncompressed raw data. The KTX format is a compressed
texture format that already corresponds to the way a texture is saved within
video RAM. Thus, the format can be loaded and streamed more efficiently,
as it could skip certain parts of decompression and re-compression within the
algorithm. The corresponding DirectX format is called DDS.

Video loading The video loading process is solely based on CPU and
accelerated by SIMD as the API of OpenCV, FFmpeg and STB Image already
provides. Moving more parts of the algorithm to the GPU could enhance
performance. This will increase bandwidth, as the full video data needs to
be moved to GPU to start the decoding process. However, it might be a



6.2 Other applications 65

fraction of the full raw frame data, as the encoded frame is obviously better
compressed. In the current approach, the GPU has no major workload despite
the linear reconstruction shading and some post-processing like the radial
blur.

Perception and saliency An additional focus on variance-based approaches
could improve the perceptual results. Using knowledge about significant edges
and factoring in other color spaces, similar to results from [76][6], could add
robustness. This will however drastically increase data pre-processing step
and result in a much more complex algorithm.

As discussed earlier in Section 3.2, ray tracing use knowledge of scene
geometry to closer adapt data structures like kD trees[9] or BVH trees[62][39]
to the scene. Similarly, a Grid could use saliency-based approaches to more
closely adapt to the actual video data. For example, for regions with no
derivations less grid cells might suffice, while other regions might need a very
high resolution grid.

Lastly, the frame rate presumably does not need to be equal for every
video tile. The current approach has effectively the same frame rate for every
video tile. However, the Framework 1 already limits this by not guaranteeing
frame correct mip-map level changes due to the multi-threaded nature of the
implementation. Similarly, frames in the peripheral region could simply just
update less often than within the central vision region.

6.2 Other applications

The current approach can reduce the bandwidth by up to 97 percent. This
creates great possibilities for various applications. The main motivation are
consumer setups for virtual reality, as soon available with Oculus Rift[19].
However, other applications are thinkable.

Due to the very low bandwidth, remote applications are possible. Pupil
detection is possible even on mobile and embedded devices[38]. The algorithm
needs just (x, y) input data of the current eye position to process a frame.
When processed, it has a byte array of raw video data to be send to a GPU
for reconstruction.

However, this does not necessarily need to be on the same computer. For
example, a mobile device could detect pupil movements, upload them to a
server which has an implementation of the algorithm and raw video data. The
server can then process a frame and just send back the foveated image. While
the bandwidth was reduced to make GPU streaming more efficient, this also
results in a very small network bandwidth for downloading the image data
back to the mobile device.

Thus, when encapsulating the pupil detection and rendering from the
video loading, this will open the door for various kinds of remote and mobile



66 Discussion

applications.
While client and server approaches within the same room or house are

already a great application, the reduced bandwidth can even help with stream-
ing the data over the internet. Various cloud gaming provider like OnLive[57]
(though suspended and acquired by Sony Entertainment) already proved the
capabilities of streaming interactive media through the internet. Combining
these technologies with a HMD system and this algorithm, such a service
could easily be implemented in a much higher resolution using gaze-contingent
rendering.



Chapter 7

Conclusion

First, Chapter 3 compared various ideas based on different literature and
other existing approaches (discussed in Chapter 2) in terms of whether they
fit gaze-contingent rendering. An approach for both sampling-based and grid-
based visual acuity was in the focus. Furthermore, a video format for loading
high resolution data and some techniques for texture streaming with high
efficiency were developed.

Incorporating these approaches to software design, Chapter 4 uses this
knowledge to efficiently implement two different frameworks: one for wide-
screen videos and one for 360-degree panoramic videos. Each framework
uses a variety of different design ideas in order to gain a good grasp on
different decisions. A focus has been the decrease of bandwidth used for
texture streaming.

The analysis of Chapter 5 shows great capabilities of both frameworks.
Each implementation was easily able to play videos in up to 30 frames per
second in resolutions up to 16K. This means it is capable of sustaining a
real-time rendering for common 25 frames per second video material. The
wide-screen video framework could even reach 60 frames per second for 8K
video material. The evaluation successfully shows, that the approach can scale
well enough to smoothly render high resolution media like 16K panoramic
videos.

Furthermore, the bandwidth could be decreased by up to 97%. This
confirms the results of other publications and shows the potential of the
underlying acuity approach. There is an increase of only 6% video RAM for
the panoramic videos. In terms of shading, both approaches use only linear
operations within the fragment shader to successfully reconstruct the frame.
This means, the graphics card is not working to its capacity and can be
used for other things like post-processing. There are some drawbacks and
limitations to the system and the overall state is thoroughly discussed in
Chapter 6. Furthermore, there are a variety of ideas and other applications
which can be build upon this thesis, as discussed in Section 6.1.



68 Conclusion



Bibliography

[1] Microsoft Virtual Academy. Massive Virtual Textures for Games: Di-
rect3D Tiled Resources. https://channel9.msdn.com/Events/Build/
2013/4-063. June 2013.

[2] G. Agarwal, A. Anbu, and A. Sinha. “A fast algorithm to find the
region-of-interest in the compressed MPEG domain”. In: Multimedia
and Expo, 2003. ICME ’03. Proceedings. 2003 International Conference
on. Vol. 2. July 2003. doi: 10.1109/ICME.2003.1221571.

[3] P. Agre and D. Schuler. Reinventing Technology, Rediscovering Com-
munity: Critical Explorations of Computing as a Social Practice. Folk-
tales of Their People]. Ablex Pub., 1997. isbn: 9781567502589. url:
https://books.google.de/books?id=LwTYjYH-GNwC.

[4] S. Anstis. “Picturing peripheral acuity”. In: Perception 27.7 (1998),
pp. 817–825.

[5] Arthur Appel. “Some Techniques for Shading Machine Renderings of
Solids”. In: Proceedings of the April 30–May 2, 1968, Spring Joint
Computer Conference. AFIPS ’68 (Spring). Atlantic City, New Jersey:
ACM, 1968, pp. 37–45. doi: 10.1145/1468075.1468082. url: http:
//doi.acm.org/10.1145/1468075.1468082.

[6] Tunç Ozan Aydin et al. “Visually Significant Edges”. In: ACM Trans.
Appl. Percept. 7.4 (July 2010), 27:1–27:15. issn: 1544-3558. doi: 10.
1145/1823738.1823745. url: http://doi.acm.org/10.1145/
1823738.1823745.

[7] Sean Barrett. Sean’s Tool Box. https://github.com/nothings/stb.
Feb. 2016.

[8] David Benson and Joel Davis. “Octree Textures”. In: Proceedings of
the 29th Annual Conference on Computer Graphics and Interactive
Techniques. SIGGRAPH ’02. San Antonio, Texas: ACM, 2002, pp. 785–
790. isbn: 1581135211. doi: 10.1145/566570.566652. url: http:
//doi.acm.org/10.1145/566570.566652.

https://channel9.msdn.com/Events/Build/2013/4-063
https://channel9.msdn.com/Events/Build/2013/4-063
http://dx.doi.org/10.1109/ICME.2003.1221571
https://books.google.de/books?id=LwTYjYH-GNwC
http://dx.doi.org/10.1145/1468075.1468082
http://doi.acm.org/10.1145/1468075.1468082
http://doi.acm.org/10.1145/1468075.1468082
http://dx.doi.org/10.1145/1823738.1823745
http://dx.doi.org/10.1145/1823738.1823745
http://doi.acm.org/10.1145/1823738.1823745
http://doi.acm.org/10.1145/1823738.1823745
https://github.com/nothings/stb
http://dx.doi.org/10.1145/566570.566652
http://doi.acm.org/10.1145/566570.566652
http://doi.acm.org/10.1145/566570.566652


70 BIBLIOGRAPHY

[9] Jon Louis Bentley. “Multidimensional binary search trees used for as-
sociative searching”. In: Commun. ACM 18.9 (Sept. 1975), pp. 509–
517. issn: 0001-0782. doi: 10.1145/361002.361007. url: http:
//doi.acm.org/10.1145/361002.361007.

[10] Mark R Bolin and Gary W Meyer. “A perceptually based adaptive
sampling algorithm”. In: Proceedings of the 25th annual conference on
Computer graphics and interactive techniques. ACM. 1998, pp. 299–309.

[11] Hamilton Y. Chong, Steven J. Gortler, and Todd Zickler. “A Perception-
based Color Space for Illumination-invariant Image Processing”. In:
ACM Trans. Graph. 27.3 (Aug. 2008), 61:1–61:7. issn: 0730-0301.
doi: 10.1145/1360612.1360660. url: http://doi.acm.org/10.
1145/1360612.1360660.

[12] Alex Clark. Pillow. https://github.com/python-pillow/Pillow.
Feb. 2016.

[13] Nitin Dhavale and Lativent Itti. “Saliency-based multifoveated MPEG
compression”. In: Signal processing and its applications, 2003. Proceed-
ings. Seventh international symposium on. Vol. 1. IEEE. 2003, pp. 229–
232.

[14] Piotr Didyk et al. “Apparent display resolution enhancement for moving
images”. In: ACM Transactions on Graphics (TOG). Vol. 29. 4. ACM.
2010, p. 113.

[15] Andrew T Duchowski. “A breadth-first survey of eye-tracking applica-
tions”. In: Behavior Research Methods, Instruments, & Computers 34.4
(2002), pp. 455–470.

[16] Andrew T Duchowski, Nathan Cournia, and Hunter Murphy. “Gaze-
contingent displays: A review”. In: CyberPsychology & Behavior 7.6
(2004), pp. 621–634.

[17] Asieh Ehsaei et al. “Visual performance fall-off with eccentricity in
myopes versus emmetropes”. English. In: Journal of Optometry 6.1
(2013), pp. 36–44. doi: 10.1016/j.optom.2012.07.001.

[18] J.P. Ewins et al. “MIP-map level selection for texture mapping”. In:
Visualization and Computer Graphics, IEEE Transactions on 4.4 (Oct.
1998), pp. 317–329. issn: 1077-2626. doi: 10.1109/2945.765326.

[19] Facebook. Oculus. https://www.oculus.com/en-us/. Jan. 2016.

[20] Steven Feiner, Blair Macintyre, and Dorée Seligmann. “Knowledge-
based augmented reality”. In: Communications of the ACM 36.7 (1993),
pp. 53–62.

[21] FFmpeg. FFmpeg. https://www.ffmpeg.org/. Feb. 2016.

[22] Blender Foundation. Caminandes. http://www.caminandes.com/.
Feb. 2013.

http://dx.doi.org/10.1145/361002.361007
http://doi.acm.org/10.1145/361002.361007
http://doi.acm.org/10.1145/361002.361007
http://dx.doi.org/10.1145/1360612.1360660
http://doi.acm.org/10.1145/1360612.1360660
http://doi.acm.org/10.1145/1360612.1360660
https://github.com/python-pillow/Pillow
http://dx.doi.org/10.1016/j.optom.2012.07.001
http://dx.doi.org/10.1109/2945.765326
https://www.oculus.com/en-us/
https://www.ffmpeg.org/
http://www.caminandes.com/


BIBLIOGRAPHY 71

[23] A. Fujimoto, T. Tanaka, and K. Iwata. “ARTS: Accelerated Ray-Tracing
System”. In: Computer Graphics and Applications, IEEE 6.4 (Apr.
1986), pp. 16–26. issn: 0272-1716. doi: 10.1109/MCG.1986.276715.

[24] GoPro. GoPro Official Website - Capture + share your world. https:
//gopro.com/. Jan. 2016.

[25] N. Greene. “Environment Mapping and Other Applications of World
Projections”. In: Computer Graphics and Applications, IEEE 6.11 (Nov.
1986), pp. 21–29. issn: 0272-1716. doi: 10.1109/MCG.1986.276658.

[26] J. E. Greivenkamp et al. “Visual acuity modeling using optical ray-
tracing of schematic eyes”. In: Am. J. Ophthalmol. 120.2 (Aug. 1995),
pp. 227–240.

[27] Steve Grogorick. “Binokulares Eye-Tracking fuer Linsenbasierte Head-
Mounted Displays”. Master’s Thesis. Germany: TU Braunschweig, Mar.
2015.

[28] Khronos Group. The KTX File Format and Tools. https : / / www .
khronos.org/opengles/sdk/tools/KTX/. May 2013.

[29] Brian Guenter et al. “Foveated 3D Graphics”. In: ACM Trans. Graph.
31.6 (Nov. 2012), 164:1–164:10. issn: 0730-0301. doi: 10 . 1145 /
2366145.2366183. url: http://doi.acm.org/10.1145/2366145.
2366183.

[30] Taosong He et al. “Voxel Based Object Simplification”. In: Proceedings
of the 6th Conference on Visualization ’95. VIS ’95. Washington, DC,
USA: IEEE Computer Society, 1995, pp. 296–. isbn: 0818671874. url:
http://dl.acm.org/citation.cfm?id=832271.833850.

[31] S Heymann et al. “Representation, coding and interactive rendering of
high-resolution panoramic images and video using MPEG-4”. In: Proc.
Panoramic Photogrammetry Workshop (PPW). 2005.

[32] Yiqun Hu, Liang-Tien Chia, and Deepu Rajan. “Region-of-interest
based image resolution adaptation for mpeg-21 digital item”. In: Pro-
ceedings of the 12th annual ACM international conference on Multime-
dia. ACM. 2004, pp. 340–343.

[33] Tobias Hüttner. “High resolution textures”. In: Visualization’98-Late
Breaking Hot Topics Papers (1998), pp. 13–17.

[34] HybridMedical. 360 ◦ VR | inside the GI tract. https://www.youtube.
com/watch?v=upSnH436ya8. Sept. 2015.

[35] Itseez. OpenCV. http://opencv.org/. Feb. 2016.

[36] J. H. Jamar, L. F. Kwakman, and J. J. Koenderink. “The sensitivity of
the peripheral visual system to amplitude-modulation and frequency-
modulation of sine-wave patterns”. In: Vision Res. 24.3 (1984), pp. 243–
249.

http://dx.doi.org/10.1109/MCG.1986.276715
https://gopro.com/
https://gopro.com/
http://dx.doi.org/10.1109/MCG.1986.276658
https://www.khronos.org/opengles/sdk/tools/KTX/
https://www.khronos.org/opengles/sdk/tools/KTX/
http://dx.doi.org/10.1145/2366145.2366183
http://dx.doi.org/10.1145/2366145.2366183
http://doi.acm.org/10.1145/2366145.2366183
http://doi.acm.org/10.1145/2366145.2366183
http://dl.acm.org/citation.cfm?id=832271.833850
https://www.youtube.com/watch?v=upSnH436ya8
https://www.youtube.com/watch?v=upSnH436ya8
http://opencv.org/


72 BIBLIOGRAPHY

[37] JeffPerry. Foveated Imaging. https://en.wikipedia.org/wiki/
Foveated_imaging, Public domain. June 2008.

[38] Marc Aurel Kastner. “Robust binocular pupil detection for a mobile
computing platform”. Project Thesis. Germany: TU Braunschweig,
Sept. 2015.

[39] Timothy L. Kay and James T. Kajiya. “Ray tracing complex scenes”.
In: SIGGRAPH Comput. Graph. 20.4 (Aug. 1986), pp. 269–278. issn:
0097-8930. doi: 10.1145/15886.15916. url: http://doi.acm.org/
10.1145/15886.15916.

[40] Joyce L. Kerr. “Visual resolution in the periphery”. In: Perception &
Psychophysics 9.3 (May 1971), pp. 375–378. issn: 1532-5962. doi: 10.
3758/BF03212671. url: http://dx.doi.org/10.3758/BF03212671.

[41] Han Suk Kim and J.P. Schulze. “High Resolution Video Playback in
Immersive Virtual Environments”. In: Virtual Reality Conference, 2009.
VR 2009. IEEE. Mar. 2009, pp. 247–248. doi: 10.1109/VR.2009.
4811038.

[42] E.M. Kolasinski, U.S. Army Research Institute for the Behavioral, and
Social Sciences. Simulator sickness in virtual environments. Technical
report (U.S. Army Research Institute for the Behavioral and Social
Sciences). U.S. Army Research Institute for the Behavioral and So-
cial Sciences, 1995. url: https://books.google.de/books?id=
7qwrAAAAYAAJ.

[43] Philip Kortum and Wilson S. Geisler. Implementation of a foveated
image coding system for image bandwidth reduction. 1996. doi: 10.
1117/12.238732. url: http://dx.doi.org/10.1117/12.238732.

[44] Sam Lantinga. Simple Directmedia Layer. https://www.libsdl.org/.
Feb. 2016.

[45] Joseph J. LaViola Jr. “A Discussion of Cybersickness in Virtual Environ-
ments”. In: SIGCHI Bull. 32.1 (Jan. 2000), pp. 47–56. issn: 0736-6906.
doi: 10.1145/333329.333344. url: http://doi.acm.org/10.1145/
333329.333344.

[46] Sanghoon Lee, Marios S Pattichis, and Alan Conrad Bovik. “Foveated
video compression with optimal rate control”. In: Image Processing,
IEEE Transactions on 10.7 (2001), pp. 977–992.

[47] Dennis M Levi, Stanley A Klein, and AP Aitsebaomo. “Vernier acuity,
crowding and cortical magnification”. In: Vision research 25.7 (1985),
pp. 963–977.

[48] Marc Levoy and Ross Whitaker. “Gaze-directed volume rendering”. In:
ACM SIGGRAPH Computer Graphics 24.2 (1990), pp. 217–223.

https://en.wikipedia.org/wiki/Foveated_imaging
https://en.wikipedia.org/wiki/Foveated_imaging
http://dx.doi.org/10.1145/15886.15916
http://doi.acm.org/10.1145/15886.15916
http://doi.acm.org/10.1145/15886.15916
http://dx.doi.org/10.3758/BF03212671
http://dx.doi.org/10.3758/BF03212671
http://dx.doi.org/10.3758/BF03212671
http://dx.doi.org/10.1109/VR.2009.4811038
http://dx.doi.org/10.1109/VR.2009.4811038
https://books.google.de/books?id=7qwrAAAAYAAJ
https://books.google.de/books?id=7qwrAAAAYAAJ
http://dx.doi.org/10.1117/12.238732
http://dx.doi.org/10.1117/12.238732
http://dx.doi.org/10.1117/12.238732
https://www.libsdl.org/
http://dx.doi.org/10.1145/333329.333344
http://doi.acm.org/10.1145/333329.333344
http://doi.acm.org/10.1145/333329.333344


BIBLIOGRAPHY 73

[49] J.J.-W. Lin et al. “Effects of field of view on presence, enjoyment,
memory, and simulator sickness in a virtual environment”. In: Virtual
Reality, 2002. Proceedings. IEEE. 2002, pp. 164–171. doi: 10.1109/
VR.2002.996519.

[50] Gerard Llorach, Alun Evans, and Josep Blat. “Simulator Sickness and
Presence Using HMDs: Comparing Use of a Game Controller and a
Position Estimation System”. In: Proceedings of the 20th ACM Sym-
posium on Virtual Reality Software and Technology. VRST ’14. Edin-
burgh, Scotland: ACM, 2014, pp. 137–140. isbn: 9781450332538. doi:
10.1145/2671015.2671120. url: http://doi.acm.org/10.1145/
2671015.2671120.

[51] Peter Longhurst, Kurt Debattista, and Alan Chalmers. “A GPU based
saliency map for high-fidelity selective rendering”. In: Proceedings of
the 4th international conference on Computer graphics, virtual reality,
visualisation and interaction in Africa. ACM. 2006, pp. 21–29.

[52] Robert Gabriel Lupu and Florina Ungureanu. “A survey of eye tracking
methods and applications”. In: Bul Inst Polit Iaşi (2013), pp. 71–86.

[53] Nenad Markuš et al. “Eye pupil localization with an ensemble of ran-
domized trees”. In: Pattern Recognition 47.2 (2014), pp. 578–587. issn:
0031-3203. doi: http://dx.doi.org/10.1016/j.patcog.2013.08.
008. url: http://www.sciencedirect.com/science/article/pii/
S0031320313003294.

[54] Tomasz Mazuryk and Michael Gervautz. Virtual Reality - History, Ap-
plications, Technology and Future. 1996.

[55] Don P. Mitchell. “The antialiasing problem in ray tracing”. In: (1990).
doi: 10.1.1.587.6122.

[56] SARAH NICHOLS, CLOVISSA HALDANE, and JOHN R. WILSON.
“Measurement of presence and its consequences in virtual environments”.
In: International Journal of Human-Computer Studies 52.3 (2000),
pp. 471–491. issn: 1071-5819. doi: http://dx.doi.org/10.1006/
ijhc.1999.0343. url: http://www.sciencedirect.com/science/
article/pii/S1071581999903439.

[57] OnLive. OnLive Games on Demand. http://onlive.com/. Feb. 2016.

[58] OpenCV. Bug Tracker: Erroneous frame seek in VideoCapture::set.
https://github.com/Itseez/opencv/issues/4890. Dec. 2014.

[59] V. Ponz et al. “Topography-Based Detection of the Iris Centre Using
Multiple-Resolution Images”. In: Machine Vision and Image Processing
Conference (IMVIP), 2011 Irish. Sept. 2011, pp. 32–37. doi: 10.1109/
IMVIP.2011.15.

[60] James Reason and J. J. Brand. Motion sickness. English. Academic
Press London ; New York, 1975, xi, 310 p. : isbn: 0125840500.

http://dx.doi.org/10.1109/VR.2002.996519
http://dx.doi.org/10.1109/VR.2002.996519
http://dx.doi.org/10.1145/2671015.2671120
http://doi.acm.org/10.1145/2671015.2671120
http://doi.acm.org/10.1145/2671015.2671120
http://dx.doi.org/http://dx.doi.org/10.1016/j.patcog.2013.08.008
http://dx.doi.org/http://dx.doi.org/10.1016/j.patcog.2013.08.008
http://www.sciencedirect.com/science/article/pii/S0031320313003294
http://www.sciencedirect.com/science/article/pii/S0031320313003294
http://dx.doi.org/10.1.1.587.6122
http://dx.doi.org/http://dx.doi.org/10.1006/ijhc.1999.0343
http://dx.doi.org/http://dx.doi.org/10.1006/ijhc.1999.0343
http://www.sciencedirect.com/science/article/pii/S1071581999903439
http://www.sciencedirect.com/science/article/pii/S1071581999903439
http://onlive.com/
https://github.com/Itseez/opencv/issues/4890
http://dx.doi.org/10.1109/IMVIP.2011.15
http://dx.doi.org/10.1109/IMVIP.2011.15


74 BIBLIOGRAPHY

[61] Eyal M. Reingold et al. “Gaze-contingent multiresolutional displays:
An integrative review”. In: HFES Journal 45.2 (2003), pp. 307–328.

[62] Steven M. Rubin and Turner Whitted. “A 3-dimensional representation
for fast rendering of complex scenes”. In: SIGGRAPH Comput. Graph.
14.3 (July 1980), pp. 110–116. issn: 0097-8930. doi: 10.1145/965105.
807479. url: http://doi.acm.org/10.1145/965105.807479.

[63] Alexander C. Schütz, Doris I. Braun, and Karl R. Gegenfurtner. “Eye
movements and perception: A selective review”. In: Journal of Vision
11.5 (2011), p. 9. doi: 10.1167/11.5.9. eprint: /data/Journals/
JOV/933487/jov-11-5-9.pdf. url: +%20http://dx.doi.org/10.
1167/11.5.9.

[64] Graham Sellers et al. “Rendering Massive Virtual Worlds”. In: ACM
SIGGRAPH 2013 Courses. SIGGRAPH ’13. Anaheim,California: ACM,
2013, 23:1–23:88. isbn: 9781450323390. doi: 10 . 1145 / 2504435 .
2504458. url: http://doi.acm.org/10.1145/2504435.2504458.

[65] C.E. Shannon. “Communication In The Presence Of Noise”. In: Pro-
ceedings of the IEEE 86.2 (Feb. 1998), pp. 447–457. issn: 0018-9219.
doi: 10.1109/JPROC.1998.659497.

[66] A. Shroff. An Eye on Numbers: A Ready Reckoner in Ophthalmology.
Postscript Media Pvt Ltd, 2011. isbn: 9788192112312. url: https:
//books.google.de/books?id=mngaB6jFVS0C.

[67] L. Spillmann and J. S. Werner. Visual Perception: The Neurophysiolog-
ical Foundations. Elsevier Science, 2012. isbn: 9780323138147. url:
https://books.google.de/books?id=zJp6s%5C_YkqpwC.

[68] Michael Stengel et al. “An Affordable Solution for Binocular Eye Track-
ing and Calibration in Head-mounted Displays”. In: Proc. ACM Multi-
media 2015. Won the ’Best Student Paper Award’. Oct. 2015, pp. 15–
24.

[69] Robert J. Stone. “Haptic Human-Computer Interaction: First Inter-
national Workshop Glasgow, UK, August 31 — September 1, 2000
Proceedings”. In: ed. by Stephen Brewster and Roderick Murray-Smith.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2001. Chap. Haptic
feedback: a brief history from telepresence to virtual reality, pp. 1–
16. isbn: 9783540445890. doi: 10.1007/3-540-44589-7_1. url:
http://dx.doi.org/10.1007/3-540-44589-7_1.

[70] Hans Strasburger, Ingo Rentschler, and Martin Jüttner. “Peripheral
vision and pattern recognition: A review”. In: Journal of Vision 11.5
(2011), p. 13. doi: 10.1167/11.5.13. eprint: /data/Journals/JOV/
933487/jov-11-5-13.pdf. url: +%20http://dx.doi.org/10.1167/
11.5.13.

http://dx.doi.org/10.1145/965105.807479
http://dx.doi.org/10.1145/965105.807479
http://doi.acm.org/10.1145/965105.807479
http://dx.doi.org/10.1167/11.5.9
/data/Journals/JOV/933487/jov-11-5-9.pdf
/data/Journals/JOV/933487/jov-11-5-9.pdf
+%20http://dx.doi.org/10.1167/11.5.9
+%20http://dx.doi.org/10.1167/11.5.9
http://dx.doi.org/10.1145/2504435.2504458
http://dx.doi.org/10.1145/2504435.2504458
http://doi.acm.org/10.1145/2504435.2504458
http://dx.doi.org/10.1109/JPROC.1998.659497
https://books.google.de/books?id=mngaB6jFVS0C
https://books.google.de/books?id=mngaB6jFVS0C
https://books.google.de/books?id=zJp6s%5C_YkqpwC
http://dx.doi.org/10.1007/3-540-44589-7_1
http://dx.doi.org/10.1007/3-540-44589-7_1
http://dx.doi.org/10.1167/11.5.13
/data/Journals/JOV/933487/jov-11-5-13.pdf
/data/Journals/JOV/933487/jov-11-5-13.pdf
+%20http://dx.doi.org/10.1167/11.5.13
+%20http://dx.doi.org/10.1167/11.5.13


BIBLIOGRAPHY 75

[71] Veronica Sundstedt et al. “Visual attention for efficient high-fidelity
graphics”. In: Proceedings of the 21st spring conference on Computer
graphics. ACM. 2005, pp. 169–175.

[72] Ivan E Sutherland. “A head-mounted three dimensional display”. In:
Proceedings of the December 9-11, 1968, fall joint computer conference,
part I. ACM. 1968, pp. 757–764.

[73] Ivan E Sutherland. “The ultimate display”. In: Multimedia: From Wag-
ner to virtual reality (1965).

[74] M. Tkalcic and J.F. Tasic. “Colour spaces: perceptual, historical and
applicational background”. In: EUROCON 2003. Computer as a Tool.
The IEEE Region 8. Vol. 1. Sept. 2003, 304–308 vol.1. doi: 10.1109/
EURCON.2003.1248032.

[75] Tschmits. The application of a texture in the UV space related to the
effect in 3D. https://en.wikipedia.org/wiki/UV_mapping, CC-BY-
SA-3.0. Jan. 2008.

[76] Chun-Shun Tseng et al. “Significant edge finding in view of human
perception”. In: System Integration (SII), 2011 IEEE/SICE Interna-
tional Symposium on. Dec. 2011, pp. 84–89. doi: 10.1109/SII.2011.
6147424.

[77] Eric Veach and Leonidas J. Guibas. “Optimally Combining Sampling
Techniques for Monte Carlo Rendering”. In: Proceedings of the 22Nd
Annual Conference on Computer Graphics and Interactive Techniques.
SIGGRAPH ’95. New York, NY, USA: ACM, 1995, pp. 419–428. isbn:
0897917014. doi: 10.1145/218380.218498. url: http://doi.acm.
org/10.1145/218380.218498.

[78] V. Virsu and J. Rovamo. “Visual resolution, contrast sensitivity, and the
cortical magnification factor”. In: Exp Brain Res 37.3 (1979), pp. 475–
494.

[79] Zhou Wang, Ligang Lu, and A.C. Bovik. “Foveation scalable video
coding with automatic fixation selection”. In: Image Processing, IEEE
Transactions on 12.2 (Feb. 2003), pp. 243–254. issn: 1057-7149. doi:
10.1109/TIP.2003.809015.

[80] T. Wertheim and T. Wertheim. “Peripheral visual acuity: Th. Wertheim”.
In: Am J Optom Physiol Opt 57.12 (Dec. 1980), pp. 915–924.

[81] Gerald Westheimer and Suzanne P McKee. “Stereoscopic acuity for
moving retinal images”. In: JOSA 68.4 (1978), pp. 450–455.

[82] Frank W Weymouth. “Visual Sensory Units And The Minimum Angle
Of Resolution”. In: Optometry & Vision Science 40.9 (1963), pp. 550–
568.

http://dx.doi.org/10.1109/EURCON.2003.1248032
http://dx.doi.org/10.1109/EURCON.2003.1248032
https://en.wikipedia.org/wiki/UV_mapping
http://dx.doi.org/10.1109/SII.2011.6147424
http://dx.doi.org/10.1109/SII.2011.6147424
http://dx.doi.org/10.1145/218380.218498
http://doi.acm.org/10.1145/218380.218498
http://doi.acm.org/10.1145/218380.218498
http://dx.doi.org/10.1109/TIP.2003.809015


76 BIBLIOGRAPHY

[83] Wikipedia. Google Glass. https://en.wikipedia.org/wiki/Google_
Glass. Feb. 2016.

[84] Lance Williams. “Pyramidal Parametrics”. In: SIGGRAPH Comput.
Graph. 17.3 (July 1983), pp. 1–11. issn: 0097-8930. doi: 10.1145/
964967 . 801126. url: http : / / doi . acm . org / 10 . 1145 / 964967 .
801126.

[85] Joanna Wiśniewska, Mahdi Rezaei, and Reinhard Klette. “Computer
Vision and Graphics: International Conference, ICCVG 2014, War-
saw, Poland, September 15-17, 2014. Proceedings”. In: ed. by Leszek
J. Chmielewski et al. Cham: Springer International Publishing, 2014.
Chap. Robust Eye Gaze Estimation, pp. 636–644. isbn: 9783319113319.
doi: 10.1007/978-3-319-11331-9_76. url: http://dx.doi.org/
10.1007/978-3-319-11331-9_76.

[86] Zephyris. Representation of the UV mapping of a cube. https://en.
wikipedia.org/wiki/UV_mapping, CC-BY-SA-3.0. Feb. 2016.

https://en.wikipedia.org/wiki/Google_Glass
https://en.wikipedia.org/wiki/Google_Glass
http://dx.doi.org/10.1145/964967.801126
http://dx.doi.org/10.1145/964967.801126
http://doi.acm.org/10.1145/964967.801126
http://doi.acm.org/10.1145/964967.801126
http://dx.doi.org/10.1007/978-3-319-11331-9_76
http://dx.doi.org/10.1007/978-3-319-11331-9_76
http://dx.doi.org/10.1007/978-3-319-11331-9_76
https://en.wikipedia.org/wiki/UV_mapping
https://en.wikipedia.org/wiki/UV_mapping

	Eidesstattliche Erklärung
	Introduction
	Problem
	Motivation
	About this thesis

	Related work
	Virtual reality
	Simulation sickness

	Pupil detection
	Human visual system
	High Resolution Textures
	Ray tracing-based approaches


	Method
	Factoring in acuity
	Sampling-based approaches
	Grid-based approaches
	Saliency-based approaches

	Video pre-processing
	Video handling
	Reconstruct video frames
	Handling 360-degree panoramic videos


	Implementation
	Framework for wide-screen videos
	Acuity by sampling
	Data pre-processing
	Texture loading

	Framework for 360-degree panoramic videos
	Data pre-processing
	Acuity function
	Video handling

	HMD compatibility
	Optimization steps

	Evaluation
	Test environment
	Hardware
	Framework
	Scenes

	Pre-processing data
	Video handling
	Video codecs
	Picture formats
	Texture handling

	Performance
	Framework for wide-screen videos
	Framework for panoramic videos

	Perception

	Discussion
	Further ideas
	Other applications

	Conclusion

