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Zusammenfassung

Uniform Grid ist eine häufig genutzte Datenstruktur zum Beschleunigen von
Ray Tracing Verfahren. Dennoch hat das klassische Grid einige Nachteile,
wie den hohen Speicherverbrauch, der proportional mit der Auflösung zu-
nimmt und die daraus resultierenden Probleme mit dichter Geometrie in
großen Szenen umzugehen (vgl. mit dem so genannten

”
Teepot im Stadion“-

Problem). Dennoch sind ihre Konstruktions- und Traversierungszeiten sehr
schnell im Vergleich zu Bounding Volume Hierarchien (BVH) und anderen
hierarchischen Ansätzen.

Diese Abschlussarbeit beschreibt eine neue Beschleinigungsdatenstruk-
tur für Ray Tracing, die Vorteile aus vorherigen Methoden kombiniert.
Sie basiert auf Ansätzen von hierarchischen Raum-unterteilenden Daten-
strukturen sowie verschachtelten Grids. Der Algorithmus wird in einer
naiven Variante, die 1-dimensionale Grids in einer Hierarchie verschachtelt,
eingeführt. Durch die Struktur ist es weiterhin möglich mit Techniken ähn-
lich dem 3D-DDA Algorithmus zu traversieren. Heuristische Methoden
zur adaptiven Berechnung von Parametern wie der Auflösung und Tiefe
der Datenstruktur werden evaluiert. Darüber hinaus wird eine speziellere
Variante der Datenstruktur präsentiert, in der eine Loose-Speicherung zum
Umgehen doppelter Referenzen eingesetzt wird. Beide Varianten werden auf
der CPU implementiert, im Detail evaluiert und in bekannten Szenen mit an-
deren Datenstrukturen verglichen, die dem Stand der Forschung entsprechen.



vi



Abstract

Uniform Grids are commonly employed acceleration structures for speeding
up ray tracing. Unfortunately, the classic Grid suffers from several problems
such as a high memory footprint, the inability to handle clustered geometry
(tea-pot-in-a-stadium problem) and a scaling linear to its resolution. How-
ever, their construction and traversal times are slightly faster compared to
Bounding Volume Hierarchies (BVH) or other hierarchical approaches. Ex-
tensions to the uniform Grid are Hierarchical or Nested grids, which try to
overcome some of the known drawbacks.

This thesis provides a new acceleration data structure for ray tracing
that takes the advantage of the best of previous methods. It combines
common approaches of hierarchical space-partitioning data structures with
nested grids. The algorithm is introduced in a naive way which nests 1-
dimensional grids in a hierarchy. Due to its structure, it can use techniques
similar to 3D-DDA from uniform grids for traversal. Heuristic approaches
to calculate parameters like resolution and hierarchy depth adaptively are
evaluated. Furthermore, an additional technique to reduce the number of
double references by using a loose variant is presented. Both approaches are
implemented on CPU, evaluated in detail with common scenes and compared
to other state-of-the-art acceleration data structures.
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Chapter 1

Introduction

After over 20 years of research and development in areas of computer graph-
ics and ray tracing, the topic still gains interest and popularity. Usually, ray
tracing approaches can be divided in two fields of usage.

First, makers of computer-animated films or computer-animated imagery
(CGI) already use ray tracing for the last decade in a variety of different
movies. As it is possible to approximate graphical phenomena like global
illumination and perfect mirroring in a physically based rendering system,
especially path tracing is getting a popular method to create realistically
looking images. In CGI applications, raytracing is often used in offline ren-
dering, meaning there is no important need for speed optimization as render
farms or clouds are used. Optimizations still have a big impact on rendering
speed for CGI applications, though. For big scenes and complex structures,
single pictures may still take days of rendering, so speed optimizations can
often mean big differences in rendering times of full movies. After all, the
goal in these areas are physical correctness and high-quality graphics.

Second, the development in interactive ray tracing, which means real
time applications, is ongoing. With graphics cards getting more powerful in
fields of parallel computation, the move to a GPU ray tracer using CUDA or
OpenCL made real time ray tracing possible. As a result, future video game
engines in development start using hybrid techniques or ray tracing instead
of solely rasterization (like DirectX or OpenGL). In rasterization techniques,
complexer graphical phenomena are usually approximated or simply faked
by manual effort from artists and game designers, which results in higher
costs developing these games. For real time uses, speed optimization is the
most important issue.

Today, a lot of research done in field of raytracing is based on increasing
the performance, while maintaining most of its physically correctness, which
targets the interactive ray tracing sector. The key idea is to decrease the
amount of mathematical calculations used, or approximating values which
would be expensive to calculate in other ways. For example, using statistical
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approaches like Monte-Carlo-Integration, complex integrals can be solved
numerically by using a high sampled random distribution.

An usual approach to receive performance are so-called acceleration struc-
tures, which optimize a given scene in a pre-procession step into a data
structure, which better fits the way, a ray tracer accesses its data. There-
fore, reducing the amount of ray-geometry intersection tests. While there
are a variety of common approaches, each one has downsides and problems.

In this thesis, a new approach is presented, which tries to combine ad-
vantages of classic methods to algorithm with fewer downsides. Using a
combination of usual space cutting techniques like kD-Trees and Octrees
with the concept of Nested Grids, the new approach is more complex, but
usually fits the scene in a faster way, resulting in good traversal performance.
Both the construction and traversal algorithm will be presented, as well as
additional techniques to speed up this approach. A second variant will fea-
ture a way to get faster construction time and lower memory usage by using
a loose approach.

1.1 Outline of this thesis

This thesis is structured in the way, one would approach a new topic. After a
small introduction of the basics about ray tracing and acceleration structures
in Chapter 2, the theoretical concept of the main idea is explained in Chapter
3.

This main chapter will give a deep look into the mechanics of construc-
tion and traversal algorithms as well as additional approaches to raise their
performance. Section 3.4 will introduce the idea of the loose variant on top of
the naive concept. Afterwards, Chapter 4 will explain the implementation
of all algorithms explained in previous chapter in a pseudo-code manner.
In Chapter 5, reference implementations in C++ are used in a variety of
scenes, giving a comprehensive analysis on how these approaches compete
with other state-of-the-art acceleration structures.

Finally, the thesis concludes the analysis with a summary on how well
current implementations perform against other approaches, as well as some
brief hints for not-yet-tested ideas, which can be used in potential future
work regarding the Splitted Grid or similar acceleration structures in 6.



Chapter 2

Related Work

This chapter will explain background information and theory of ray tracing,
giving an introduction to the topic.

First, Section 2.1 will show how ray tracing works in theory, giving ex-
amples of different techniques to approximate physically correctness, and
how performance will be achieved by using several techniques of the special-
ized algorithms, like Whitted Style Integration. Afterwards, the usage and
advantages of acceleration structures are shown in Section 2.2. Therefore,
the most important state-of-the-art acceleration structures will be explained
as examples for this technique.

2.1 Ray Tracing Algorithm

A typical computer monitor has a raster of pixels, each having a different
color. Obviously, a picture rendered by raytracers is also of a given size of
N xM pixels, each having a specific color value which results in a full picture
from distance for the human eye.

In a real life ray tracing application, the goal typically is to create this
image by shooting N ∗M rays into a scene consisting of geometric primi-
tives and getting color values as a result of calculation, forming the wanted
picture.

Each ray R(t) = o + t ∗ d, described by its origin o and its direction d,
is intersected with the geometry in the scene. The ray origin is the point of
view of the camera, which views the scene, whereas the direction depends on
the pixel position in the resulting image. Imagine a pinhole camera concept,
where each ray is a 1

N∗M th of the full picture, each in a little bit different
direction to get a full picture.

After intersection with geometry, the parameter t is set to distance to
intersection point p with geometry. In usual application, one would want
the closest intersection to the origin. The color at point p is saved for the
pixel which represents the current ray. Determining the color at a given
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surface is done by so-called shading models. When there is no intersection
point with geometry, the color value is typically set to a default value, which
is often set to black.

This way, an image without shadows, refraction or reflection is created,
which is called Ray casting. In this very simple way of raytracing, complexer
shading techniques using textures are usually not used.

Figure 2.1: Ray tracing: This example shows, how rays from the eye are
casted in direction of a given scene consisting of a purple sphere. At the
point of intersection with the surface, shadow rays (dotted) are casted in
direction of the light source. At the bottom ray, the casted shadow ray hits
the sphere before light source, resulting in shadow in a rendered image.

To receive more complex visual phenomena like shadows, refraction or
reflection, there are different ways, which are a trade-off between perfor-
mance and physically correctness. A simple approach to this problem is
called Whitted Style Integration [Whi80]. To create shadows, it casts new
rays Rl(t) = op + t ∗ dl,∀l ∈ L, where L is the set of all light sources in
the scene. This time, resulting rays are intersected with the light source
l. If it hits another geometry between point p and l, the current point p
is occluded by another object, therefore, the color is darkened. If not, the
color value is used as before. These additional rays are called shadow rays.
The basic concept of ray casting and shadow rays is visualized in figure 2.1.
Similarly, the same technique is used to get reflection and refraction on sur-
faces, by adding additional rays in direction of refraction (using Snell’s law
and similar formula).

Figure 2.2 shows a simplified pseudo code for a minimal ray tracer. Note
that the function closest intersection point() is an expensive task to do. In
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1 def traceImage(scene, image):

2 for (i,j) in image:

3 ray = pixelToWorld(i,j)

4 point = closest_intersection_point(ray, scene)

5 intensity = 0.0

6

7 for light in lightsources:

8 shadowray = calculateRay(light)

9 if intersect(shadowray, scene) == 0:

10 increaseIntensity(intensity)

11

12 image[i,j] = intensity * shade(point)

Figure 2.2: Pseudo Code for ray tracing

the simplest way to achieve this, it does an intersection test for every ray
with every primitive in geometry, which results in a complexity of O(n) per
ray. The function shade() refers to a shading function determining the color
at this point of surface. As an example, the Phong shading model could be
used, as introduced by Phong [Pho75].

As intersection tests are actually the biggest part of calculations in run-
time of a ray tracer, much ideas to reduce the number of these test has been
developed.

2.1.1 Monte-Carlo Integration

A task, which costs additional time, is the physically correct rendering of
shadows and lightning, by casting additional rays on intersection points.
Physically, the task to receive light radiance on a point of surface is to solve
the rendering equation, as presented by Kajiya [Kaj86]:

Lo(x, ~ω) = Le(x, ~ω) +

∫
Ω
fr(x, ~ω

′, ~ω)Li(x, ~ω
′) (~ω′ · ~n) d~ω′, (2.1)

where Lo is the light radiance on the point x to direction ~ω, Le is the
light emission at the point x to direction ~ω, Ω is the unit hemisphere, fr
a function determining the proportion of light reflected from ~ω′ to ~ω called
bidirectional reflectance distribution function, Li the incoming light on point
x from direction ~ω′ and ~n describing the normal at point x. This equation
is not solvable efficiently, as it contains an integral. Therefore, couple of
tweaks are needed to achieve performance and a faster approximation of the
rendering equation.

As previously noted, Whitted Style Integration is a way to achieve this
approximation by casting single additional rays for shadows, refraction and
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lightning. As a single ray is casted per surface hit point, the approximation
is nowhere near an integral of incoming light intensity, therefor lacking global
illumination. In simple shading models, like Phong shading, an ambient light
term is used to achieve a similar, but more unrealistic1, effect.

In a lot of cases of ray tracing, one wants to have global illumination.
In a pathtracer, each intersection of rays with surfaces will create additional
random distributed rays, a technique introduced by Kajiya [Kaj86]. This
way, a Monte-Carlo Integration is used to find a numerical solution for the
equation 2.1. The number of additionally created random rays is chosen ar-
bitrarily, but there is noise on images created with a low amount of samples.
There are ways to improve the speed of path tracing like bidirectional path
tracing, where some rays are casted from the eye, whereas others are casted
from light sources, introduced by Lafortune [Laf96].

2.1.2 Acceleration

As noted previously, a high impact on performance is the amount of intersec-
tion test done. Acceleration structures are a way to put primitives in a three
dimensional geometry to a more organized structure. This way, the perfor-
mance of ray tracing can be severely increased by decreasing the amount
of intersection tests with geometry. A more detailed view into acceleration
structures is presented in section 2.2.

An obviously big impact on performance is hardware. Traditionally, ray
tracers have been implemented on CPUs, therefore getting faster with every
new generation of processors. Since the availability of multi-core processors,
parallel computing is getting popular. A ray tracer is naturally a good usage
of parallel computing, as each ray can be calculated separately, giving the
possibility to use up to one thread per ray.

With OpenCL and CUDA getting more popular, GPU-accelerated ray
tracers also gained popularity. Modern graphic cards are already optimized
for floating point operations, specifically doing linear algebra, which are a
big part of ray tracing, giving the high amount of intersection tests. Addi-
tionally, GPU computation are highly parallelized, which also benefits ray
tracing. Therefore, porting a ray tracer to the GPU does make it possible
to render simple ray tracing applications in real time.

For a deeper view into ray tracing techniques and possibilities for accel-
eration, additional information can be found at [Gla89] [PH10].

2.2 Acceleration structures

Acceleration structures have a very high impact on performance. When test-
ing each ray with all primitives, one would get a runtime of O(n). Therefore,

1These model do not adhere the law of conservation of energy.
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a lot of work has been put into researching different kinds of acceleration
structures. Kay et al. [KK86] presented an approach to reduce the number
of intersection tests, by creating a bounding volume around the scene and
testing if the ray hits the bounding volume. The main idea is to reduce
the number of intersection tests for rays which go in a direction, where no
primitives are.

Usually, in a more advanced approach, this will be achieved by pre-
processing the given scene by dividing the space into smaller parts. De-
pending on the technique, either the space itself can be split, or the object
inside the space are split in a way, a structure can be constructed to organize
the primitives in a better way to access the data.

Afterwards rays can traverse the scene more efficiently, because the pre-
processing assures, that the rays will not have to intersection test with each
primitive anymore. For example, a ray which directs into the lower left
corner of the scene will only have to test intersection with primitives, which
are in the lower left corner. This information is achieved by traversing the
acceleration structure. Using a binary acceleration structure, it achieves a
logarithmic runtime (O(log n)).

As the pre-processed data is saved in memory, acceleration structures
have an impact on memory usage of the raytracer though. There are a few
implicit techniques, which try to avoid memory usage while still using pre-
processed structures. This is possible and used by Eisemann et al. [EBM12],
but usually much slower than using a structure with memory usage. The
reason is, in an implicit approach, trees must be calculated while traversing
the tree itself, which are a lot of additional calculations while traversing.
Also, the quality of implicit approaches does not compete with usual tech-
niques, as there is no proper focus on researching these. Another approach
by Áfra [Áfr12] proposed an implicit way of accelerating raytracing by using
divide and conquer techniques.

2.2.1 BVH-Tree

The idea, by Rubin et al. [RW80] and Kay et al. [KK86], is to create a
hierarchy of bounding volumes, the root being the scene bounding box, with
children nodes being subparts of the scene bounding box and leaf nodes are
bounding boxes of single primitives, or groups of primitives. This approach
is called Bounding Volume Hierarchy (BVH) and still a very popular to
solve this problem. The way to construct a BVH has major influences in
the speed increase, and there is a trade-off between construction time and
traversal time.

A BVH tree is usually built as a binary tree without duplicated refer-
ences, so when traversing a child, one half of primitives are cut. Due to the
design of a BVH, the memory usage is linear and predictable. Each node in
a BVH stores a full bounding box.
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An overview of different build methods for BVHs is presented by Wald
et al. [WBS07], including the surface area heuristic, short SAH, which
minimizes a cost function to determine the best split on each level while
constructing the acceleration structure. A cost estimate is usually similar
to:

Cost(c) = 2 ∗ T + I ∗ 1

A
∗ (A1 ∗ p1 + A2 ∗ p2), (2.2)

with A being the area of the overall bounding box, while Ai being the
area for a children node, and p being the number of primitives which overlap
a children node. T and I are constants for traversal and cost estimates.

There are very fast construction methods for BVH-SAH as used by Wald
et al. [Wal07] [WIP08], so it is a good approach to use for real time applica-
tions, where animations and therefore moving primitives take place. There
are other methods like spatial medium split or object medium split, but these
are usually slower than a SAH approach in traversal speed and therefore los-
ing relevance.

Figure 2.3: BVH Example: A two-dimensional example of a bounding
volume hierarchy. The blue area are nodes accessed, when traversing this
specific ray.

Usually, a BVH tree is used in applications like real time with animations,
because of very fast constructing methods and low memory usage. For GPU
raytracing, efficient stack-less traversal methods are existing, like presented
by Hapala et al. [HDW+11].
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2.2.2 kD-Tree

A kD-Tree is a space-partitioning acceleration structure introduced by Bent-
ley [Ben75]. The name stands for k -dimensional tree. A kD-Tree uses one
dimensional splitting planes to cut space in halves in a round robin manner
through dimensions. The result is an unbalanced binary tree.

Today, a kD-Tree commonly uses SAH construction methods, using
heuristic cost estimates to calculate the position of splitting plane, simi-
lar to those explained in previous subsection for a BVH in equation 3.1.
Same as a BVH, there are other construction methods like SMS or OMS
available, which usually result in slower traversal speeds.

Usually, a kD tree has the fastest traversal speed in common approaches
for raytracing, but has slight disadvantages in construction time and memory
usage. For GPU raytracing, there are high performance traversal algorithms
like by Popov et al. [PGSS07].

2.2.3 Grid

A grid is a space partitioning acceleration structure for raytracing, intro-
duced by Fujimoto et al. [FTI86]. In its most common approach, the Uni-
form Grid, it divides the three dimensional space into N xM xO cells of same
size, so called Voxels. Each primitive in the scene will get assigned to every
voxel it overlaps.

The construction times for grids are usually extremely fast, because each
primitive only uses constant time to find overlapping voxels, resulting in
O(1). As the construction only depends on projections, not involving a
hierarchy, efficient parallel algorithms like Kalojanov et al. [KS09], can be
used.

A problem for grids are very big primitives and the question how to
choose the optimal resolution, because bigger primitives overlap a large num-
ber of voxels, which result in a very high memory usage and traversal time
through duplicated references and therefore duplicated intersection tests.

It is possible to use a three-dimensional digital difference analyzer algo-
rithm, short 3DDDA, to traverse the data structure, presented by Fujimoto
et al. [FTI86] and optimized by Amanatides et al. [AW87]. This algorithm
steps through the grid in a linear manner. A visualization of this traversal
process is presented in figure 2.4

While used often in the past, recently, Grids are used fewer, because of
their high memory usage and problems with very big primitives. Another
problem is the choice of resolution in scenes with the so-called teapot-in-the-
stadium problem. This problem is named by a small teapot in a big stadium
and refers to a scene, where small high resoluted models are clustered inside
of big areas with usually wide areas of empty space, but often surrounded by
lower resoluted geometry. This is typically the case in architectural scenes.
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Figure 2.4: Grid Example: A two-dimensional example of a uniform grid.
The blue area are nodes accessed, when traversing this specific ray.

Resulting, in a scene having this scenario, the average size of primitives
is very small compared to the space, and often there are a few very big
primitives in contrary.

Using a Grid for these scenes lead to issues: A high resolution would
cause a lot of unused cells to traverse, while too low resolutions cause slow
traversal speeds near to objects. Also, bigger primitives would lie in a high
amount of cells.

Because of its very fast construction time of O(n), there are newer con-
cepts and research projects building upon the Grid.

To avoid typical problems of Grids, there are some approaches worth
mentioning. There are Hierarchical or Nested Grids, variations of a Grid,
which try to avoid the resolution problems by nesting a Grid into cells of a
Grid and therefore resulting in a hierarchical acceleration structure.

In a simple approach, Jevans et al. [JW89] used a Recursive Grid to
nest Uniform Grids into each other. This approach usually nests Grids of
the same dimension and resolution. Klimaszewski [KS97] proposed a variant
called Adaptive Grid, where he preprocessed the geometry to create clusters
of objects and then creating BVH-like trees around them. Note that the
resulting trees differ, because the first approach can not have overlapping
cells, whereas the second one can. An usage of nested grids for GPU ray
tracing is presented in Kalojanov et al. [KBS11].
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2.2.4 Others

Aside from the popular ones, there are other examples of good acceleration
structures which can be used in ray tracing.

The Octree is a space divisioning acceleration structure like a kD-Tree,
but not as a binary tree, but having 8 childs per node, which has advantages
in the way it fits to more complex scenes. An Octree has a special variation
called Loose Octree, where duplicated references are avoided by projecting
the mid-point of each primitive into a single node. To still traverse all wanted
primitives, each primitive needs to be smaller than double the size of the
node. Then, while traversing, the bounding box of each node is getting
extended, so each ray will still intersection test all geometry needed.

Whang et al. [WSC+95] proposes another variation of the Octree called
Octree-R, which does not subdivide the space at spatial median point. It
minimizes a cost function to calculate a best split point, similar to the
approach of a surface area heuristic explained previously.

As previously mentioned, in a special form of BVH called No-Memory-
Hierarchy (NMH), Eisemann et al. [EBM12] managed to create a BVH-like
acceleration structure using no additional memory at all. This implicit vari-
ant sorts the primitives array in a specific way, in which the BVH structure
can be calculated on traversal runtime. This of course is expensive, there-
fore being slower than other approaches. Using no memory at all, it can be
used on embedded systems or for very big scenes on a GPU, where memory
usually is an issue.

Another notable variant of a BVH is called bounding interval hierarchy
(BIH), developed by Nam et al. [NS04] and Zachmann [Zac02] indepen-
dently. The BIH is a combination of a BVH construction with a kD-Tree-like
traversal algorithm. A BIH stores two planes per node, so it can both allow
overlapping children like a BVH as well as ordering children along axes like
a kD-Tree.
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Chapter 3

Splitted Grid

As mentioned in previous chapter, acceleration structures have a huge im-
pact on the performance of a ray tracer. While classic hierarchical ap-
proaches as well as Grid approaches both have their downsides, the following
will introduce a new approach building upon these, trying to combine some
advantages of either type of acceleration structures.

Section 3.1 will first introduce the idea of the Splitted Grid and gives
theoretical background about how a Splitted Grid works. The following
section 3.2 will then explain, how the acceleration structure will be built.
Therefore, a naive algorithm for construction will be presented, and then
enhanced by adding arbitrary choice of parameters per inner node and a
heuristic way to determine these parameters, using a surface area heuristic.
In 3.3, the traversal algorithm will be presented. The last section 3.4 will
step further by introducing the Loose Splitted Grid. As its main concept is
similar to the Splitted Grid, this section will not re-explain the basics, but
concentrate on explaining how the loose variant differs.

3.1 Concept of Splitted Grids

The concept introduced in this thesis is called Splitted Grid. It tries to
combine an Uniform Grid with the concept of a hierarchical data structure.
The key concept is an one-dimensional grid which gets nested hierarchically.
Usual approaches of Hierarchical or Nested Grids put three dimensional
grids into each other, while this technique focuses on one dimension for each
recursion step.

The root node is an inner node using the scene bounding box for deter-
mining its childs bounding boxes. On each recursion step, the space is split
on one axis into n bounding volumes of the same size, each being a node.
A node can either be an inner or leaf node. Each Splitted Grid inner node
consists of n child nodes, which refer to either further inner nodes or leaf
nodes. A leaf node holds the primitives.
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Consider it this way: An inner node symbolizes a bounding box, and its
child nodes split this bounding box at a given axis into n pieces with same
volume. If a child node has only a small amount of primitives, it is a leaf
node. If there are a lot of primitives, a new inner node gets created which
repeats this process on the most efficient axis.

This way, the acceleration structure is able to adapt to the scene by
choosing these parameters on a per-node basis. The amount of child nodes
per inner node, as well as its splitting plane, can be chosen differently for
each inner node. Figure 3.1 shows this idea in a two-dimensional example.

root node


inner node

splitting X axis


inner node

splitting Y axis


Figure 3.1: Concept of a Splitted Grid: A two-dimensional scene with
5 primitives is built into a Splitted Grid. The first level has an inner node
with a resolution of 3, splitting the X axis. As there are more than two
primitives in the most-right child node, we add another level of splitting.
The node gets an inner node with again a resolution of 3, this time splitting
the Y axis of the bounding box of its parent node. As a result, each leaf
node has a maximum of two primitives. Note that there could be another
recursion using a third inner node with resolution 2 splitting the X axis, to
have a tree with no more than 1 primitive per leaf node, but in this case
one leaf node holds two primitives.

For an additional performance increase, the Splitted Grid uses a concept
called bounding planes. This technique introduces cutting off empty space.
As shown in figure 3.2, the bounding box of a node is not equal to the overall
bounding box of its contained primitives. In most cases, the calculated
splitted bounding box is too large, not cutting away all space it could. At
this point, it is possible to cut away the empty space of one dimension by
using two planes - the bounding planes. These planes are limiting the area
containing primitives. Afterwards, child nodes split the volume between the
bounding planes instead of the whole volume of their parent node. Using this
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method, nodes can cut off a lot of the empty space on their axis, resulting in
a tree better adapting to the scene. Additionally, traversal algorithms can
skip whole parts of the tree when moving through empty space.

After all, each inner node needs to know its splitting axis, its resolution,
an offset to its childs and to its bounding planes. A leaf node needs its
count and offset to primitive indices array. As the leaf node does not need
bounding planes for traversing, the bounding planes itself should be saved
outside of the node, so only inner nodes will have them. In both cases, the
needed values can be bit-shifted in two integers, which results in an usage
8 bytes per node. For each inner node, the bounding planes use two floats,
which use additional 8 bytes. In memory, all nodes from 0 (root) to n (last
node) are saved in an array. Using the offset in the inner nodes, m child
nodes can be referenced on the n-th node as n+ 1 to n+ 1 +m in the array.

(a) Without bounding planes (b) With bounding planes

Figure 3.2: Concept of Bounding Planes: By introducing bounding
planes (purple color), the Splitted Grid can cut off additional empty space
in each inner node. This way, the traversal algorithm can skip party of the
tree. Additionally, the limited space usually guides to a tree better adapting
to the scene.
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3.2 Construction of a Splitted Grid

There are different ways, how a Splitted Grid can get constructed. To get a
very optimized fitting to the geometry presented in scene, the parameters for
each scene must be chosen adaptively, which is complex and costs time. For
different purposes, one can distinguish between two ways of construction, a
naive approach, which uses default parameters for each inner node or slight
variations, and a second one using complex algorithms to determine a set of
parameters for each recursion step. Basically, there is a trade off between
traversal time and construction time.

In a most naive way, the construction algorithm uses a default resolution
for each inner node. For the order of splitting axis, it uses a round robin
approach. Figure 3.3 shows a resulting tree for this naive way of construc-
tion. The efficiency of traversing this tree is depending on scene geometry.
In a cubic scene with a wide distribution of even sized primitives, this simple
way of construction often adapts to the scene in a fast manner. If there are
bigger differences in size of primitives or length of axes, there are a few ways
to optimize this naive approach.

In a Splitted Grid, poorly constructed trees often do not result in bad
traversal times, but very high memory usages, because of either duplicated
references, and/or empty cells.

Instead of choosing inner node splitting axes in a round robin manner,
one can choose the longest axis of the parent bounding box. In another
approach, the resolution of inner nodes could be changed depending on the
tree depths, using lower resolution sizes deeper in the tree.

3.2.1 Heuristic construction using surface area heuristics

To get a tight fit to the geometry, the goal is to get a tree like in Figure
3.4, where both parameters are varying independent to depth or node order.
Therefore, a heuristic method has been developed, which determines best
choices for resolution and splitting axis on each recursion step.

To achieve this behavior, the idea is to use a similar approach to a surface
area heuristic in a BVH or kD-Tree, as described in [Wal04]. In a Splitted
Grid, there are two values, which must be calculated for each inner node,
the resolution and the splitting axis.

In a surface area heuristic approach, the goal is to minimize a cost esti-
mate for traversing a sub-tree. On each inner node, the algorithm guesses,
based on the current situation and distribution of primitives to the children,
which set of parameters might be the best for this node. For a Splitted Grid,
there are two parameters, splitting axis and resolution, which are available
in n ∗m combinations.

For each combination c, the cost is calculated based on the distribution
of primitives over the children:
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root node







leaf node


inner node







Splitting X


Splitting Y


Splitting Z


Figure 3.3: Splitted Grid Uniform: In an Uniform construction, the
resolution of inner nodes does not vary. The splitting axis starts with X and
then goes round robin.

Cost(c) = r ∗ T + I ∗ 1

A
∗ (

r∑
i=1

Ai ∗ pi), (3.1)

with r being the resolution, A being the area of the overall bounding
box while Ai being the area for a children node, and pi being the number
of primitives which overlap a children node. Afterwards, we are looking for
the axis and resolution:

min(Cost(c)),∀c ∈ C (3.2)

with C being a set of all combinations of splitting axis and resolution.
Note, there are two yet unnamed parameters T and I in equation 3.1, which
are constants for traversing and intersection cost estimates.

In binary trees, the traversing cost is usually lower than intersection
costs, because it only traverses two childs per step. In a Splitted Grid, this
is not the case and therefore these constants are behaving differently, as
there are up to r childs per recursion step. After all, a higher traversing
cost is expected.
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root node


leaf node


inner node, split x

inner node, split y


inner node, split z


Figure 3.4: Splitted Grid SAH: In a heuristically approach, all inner node
parameters are calculated on the fly. This way, a construction algorithm can
fit the tree more easily to a complex scene.

3.3 Traversal

For a traversing the Splitted Grid, a usual hierarchical traversal method
is used, but a few special changes ensure the decrease of tested nodes. For
easier understanding, the following will reference to a recursive variant. The
algorithm can be implemented iteratively for performance purposes.

On a given node, tNear and tFar for the ray intersecting the bounding
box of the node gets calculated. Note that this calculation is cheap, because
on every inner node, there are only two one dimensional bounding planes
as explained in Figure 3.2, which need to be clipped against. This behavior
is ensured, because every recursion level only splits one axis. Only the root
node gets a full bounding box intersection test to exclude rays never hitting
the scene.

If tFar > tNear, the node can be skipped. Otherwise, it is possible to
calculate an entry and exit node based on the projection of the ray into a
scale of 0 to n with n being the resolution of the current node

nodeentry/exit =
(oRay + dRay ∗ tNear/Far)− b

sizechild
, (3.3)

with b being the lower value bounding plane and sizechild being the
extent of a child node in axis direction, which is a constant value for all
nodes in one inner node. Note that oRay and dRay are no vectors, but the
value on the axis equal to splitting axis.

After calculating entry and exit nodes, the algorithm recursively calls
itself on each node between the entry-th and the exit-th. Depending on ray
direction, the calculated entry and exit cells need to be swapped to ensure
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the right order traversing children nodes. After each recursion call, it is
possible that the ray already hit a primitive deeper in the tree. In this
case, no further nodes need to be traversed. This can be checked by again
comparing ray hit value t against the children bounds, which are cheap to
calculate as both the lower bounding value as well as the extent of child
nodes are known.

Figure 3.5: Traversing a Splitted Grid: In this example, a ray traverses
a Splitted Grid from the bottom left to the upper right. The area marked
in turquoise are the leaf nodes, which are traversed and therefore intersect
tests are done for primitives overlapping these. The green triangle is tested,
because it overlaps a turquoise one, whereas the yellow one isn’t tested.
Pairs of red dots are values for tNear and tFar.

Figure 3.5 shows an example of how traversal looks like. To make this
example easier, no additional bounding planes are used. Instead, the bound-
ing planes of the parent node is used. Pairs of red dots are values for tNear

and tFar, which are used for determining the entry and exit nodes. Starting
the traversal, the left bottom red dot as well as its correspondent red dot
in the upper right corner (not shown as it does not get hit), will be used
to calculate the entry and exit node. In this case, all three nodes must be
traversed. After traversing the first one, which is an empty leaf node, at the
second node it will meet another inner node, where it again calculates tNear

and tFar. Here, the entry and exit node would be 3 and 2, when counting
the 5 nodes from top to bottom. The algorithm now traverses the third
node (leaf node, intersection test with the green primitive which does not
get hit) and then the second (empty leaf node) node. As this is the exit
node and tFar gets hit, the recursion goes one step up, to traverse the last,
third, node of the root node. Inside, the pink triangle gets hit, therefore
stopping traversal.
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As the example already shows, it is possible to stop the traversal algo-
rithm when tHit < tFar. This is called early out.

3.4 The Loose Splitted Grid

The Loose Splitted Grid is a slightly different concept, which is built upon
the Splitted Grid. The Splitted Grid construction method saves a primitive
in each leaf node it is overlapping. Duplicated reference cause an additional
integer to be saved each. As duplicated references are not foreseeable, the
memory usage of a tree is not behaving predictable. These additional refer-
ences can cause some severe memory issues for higher resoluted inner nodes
and a high maximum depth, causing bigger primitives to be in every leaf
node of an inner node.

A solution is a loose variant of the algorithm. In a loose variant, like
previously explained for an Octree in Section , the mid-point of a primitive
gets projected into a single leaf node. Loose bounding planes will save the
distance between the leaf bounding box and the actual end of all primitives
inside it. Afterwards, the traversal method needs to get adjusted, so all
necessary nodes get traversed correctly, not leaving out primitives which are
now in only in one node instead in all it overlaps.

This way of constructing a tree, no primitive is assigned to multiple
nodes, because their mid-point only lie in an unique one. Now, all duplicated
references are avoided, leading to a much smaller and more predictable use
of memory.

As a result of this design change, the construction method immediately
gets faster. Determining the node, a primitive falls in, is a thing of a pro-
jection, making the complexity of a recursion step for resolution r and n
primitives O(n) instead of up to O(n∗m), because there is no need to check
the overlap for each primitive/child combination.

3.4.1 Loose Bounding Planes

To assure the traversal algorithm working correctly, further concepts need
to be introduced. To know, which additional nodes must be traversed, each
node gets two additional planes, the loose bounding planes. These planes
determine how big the largest overlapping primitive of each node is.

Loose bounding planes need to be calculated while construction and
saved per inner node. Theoretically, it can take place of the previous con-
cept of bounding planes, by adding these to values to one. For the sake of
simplicity, the concept will keep both planes.

When traversing a scene, loose bounding planes can be used to determine
which nodes must be traversed in addition, by dividing it by the size of a
child. This way, one will get the offset of additional nodes, which the biggest
primitive is overlapping beside the current node. To do intersection tests
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with all necessary primitives, these offsets need to be added to the numerical
value of nodeentry and nodeexit, enlarging the range of traversed primitives.

Figure 3.6 visualizes this concept. The dotted lines are saved as loose
bounding planes. Afterwards, the blue leaf nodes can be traversed correctly,
leading to an intersection test of the green primitive. Without loose bound-
ing planes, the primitive would not be hit, because its mid point lies in the
bottom node, which would not get traversed without this extension.

Note that the amount of additional traversed nodes is increasing signif-
icantly, the bigger the loose bounding planes are. To get better traversal
times, the loose bounding planes need to be at a lower value.

Figure 3.6: Loose Bounding planes: The yellow primitive is put into the
turquoise leaf node in the middle, whereas the green primitive is put into the
bottom blue node, both because of their mid points. The dotted lines are
the extent of the biggest primitives overlapping the middle node, which are
then saved as loose bounding planes. When traversing, the turquoise area is
traversed like usual. When bringing in the loose bounding planes, the blue
nodes will be traversed additionally. This ensures the green primitive being
intersection-tested, even though it is not saved into the middle node.

3.4.2 Avoiding big primitives

There are certain tricks to keep the size of bounding planes at a low level.
The first one was already introduced, by saving the loose bounding planes
on each inner node instead of a more rare use of loose bounding planes. To
save memory, loose bounding planes could be saved per depth, but this can
have very significant impact on performance.

Big primitives, which get into deeper parts of the tree, nullify the purpose
of the concept of traversal, because the loose bounds get big enough, the
traversal algorithm would start to traverse every node at a certain depth of
the tree.
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To avoid this behavior, big primitives need get saved beforehand, keep-
ing them nearer to the root node. This way, very big primitives will be
intersection tested by almost each ray, which is unfortunate. But on the
other hand, it will decrease the size of loose bounds drastically.

A way to save primitives early, is introduced in the concept of inner node
primitives. This concept allows to save primitives next to other nodes in any
inner node. To achieve this, each inner node gets a flag, if there are inner
node primitives. If this flag is set, the construction method creates a r+1 th
node, for resolution r, which links to a leaf node with the same bounding
box as the inner node. This way, the big primitives, which are over a size
of choice bigger than the area of an inner node can be saved directly in the
inner node instead of deeper into the tree.

In the traversal algorithm, the flag gets checked at the beginning of each
node, and underlying primitives get tested if the flag is set.

Figure 3.7 shows a Loose Splitted Grid. The gray primitive is saved into
the inner node, which results in much smaller loose bounding planes for the
most left and most right nodes it overlaps.

root node


inner node

splitting X axis


inner node

splitting Y axis


Figure 3.7: Loose Splitted Grid: In contrary to the Splitted Grid, in a
loose variant, each primitive is put into the node, where its mid point lies.
A concept called loose bounding planes will ensure that all primitives, the
ray could hit, are intersection-tested correctly. To raise performance, big
primitives, which would vastly increase the size of loose bounding planes
can be saved directly in an inner node.



Chapter 4

Implementation

This chapter will annotate the implementation of both the Splitted Grid and
Loose Splitted Grid. The Splitted Grid implementation will be explained
in deep in section 4.1, whereas the Loose Splitted Grid is built upon the
Splitted Grid in section 4.2. Therefore, the Loose variant uses the same
base code, just with modifications and additions explained in its section.

While the original algorithm was implemented in C++, the following
descriptions use a pseudo code similar to Python syntax, but with types
at some points. This way, the code is short and clean, but does not lack
information needed to understand the concept.

4.1 Splitted Grid

The Splitted Grid surrounding data structure saves its data in three arrays.
The first one is a list of nodes. Each node in the resulting tree is saved in
this array. The root node is the first element with its child directly after.
Afterwards, childs-of-childs can be accessed by using offsets.

Each Splitted Grid node consists of two unsigned int. Depending on
whether it is an inner node or leaf node, it saves information in different
ways.

There are four conditions, a node can be in. It is a leaf node or an inner
node splitting either of three axes in 3 dimensional space. This axis/leaf
can be expressed in two bits, which are always stored in the upper two bits
of the first integer. For an inner node, the next 30 bits store the offset to
child nodes, whereas a leaf node stores the count of primitives it contains.

The second integer saves an indices offset for leaf nodes. This offset is
used to access the primitives in traversal. In inner nodes, this second integer
again serves purpose for two things. First, it saves the resolution of the cur-
rent node in its first bits. In this implementation, the maximum resolution
used is 16, so four bits suffice. The rest stores an offset to the boundary
planes for this node. The amount of bits for saving resolution is arbitrary.
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For higher resolutions, the amount of bits can be adjusted. This way of im-
plementation could use up to 1,073,741,824 nodes and 4,294,967,296 primi-
tives, which is more than sufficient for the tested scenes in Chapter 5.

To decrease the amount of bits needed for saving resolution, it is possible
to save resolution as exponent of the power of two. This is a performance
trade off though, as it loses accuracy determining resolution using surface
area heuristics.

The second array is a list of primitive indices. As the Splitted Grid does
not avoid duplicate references, the size of this array is usually quite bigger
than the amount of primitives. The offset saved in leaf nodes is used to
access this list.

The third and last array saves the boundary planes, used for clipping
and stepping through the traversal. This concept was previously described
in figure 3.2. There are two floats for each inner node, describing the planes
on the axis which is currently used for splitting space. Note that, bounding
planes are saved in an additional array to cut down two floats per leaf node,
as the leaf node does not need bounding planes.

4.1.1 Construction

Figure 4.1 contains a full example of resulting pseudo-code for a normal build
method. The code sample is pretty straight forward, as the construction is
similar to other hierarchical construction methods used in raytracing. The
nodeAABB, which is given as a parameter, is the parents bounding box.
Starting with this, the bounding planes get calculated by calculating an
primitive bounding box, which exactly fits the primitives in this node. After-
wards, a clipped bounding box is determined by shortening the nodeAABB
on the splitting axis to primitive bounding box values. The clipped bound-
ing box has the bounds, which are used for calculating further childs and
therefore gets saved in bounding box array. The child bounding boxes can
be calculated by dividing the clipped bounding box by resolution r, giving
the exact size of a bounding box. Afterwards, the list of primitives is sorted
to pass it to the next recursion step. If the maximum depth is exceeded or
the number of primitives are lower than a certain threshold, a leaf node gets
created.

The surface area heuristic variant is very similar. It does not save con-
stants for resolution and does not round robin through the axes. Instead, in
the beginning of each subdivide() call, it calculates the best resolution and
axis for this particular node. A pseudo code for the surface area heuristic is
given in figure 4.2. The two cost estimates for traversal cost and intersect
cost are chosen beforehand. For acceleration structures like BVH-SAH or
kD-SAH, intersect costs are often higher than traversal costs, resulting in a
lower value for traversal cost. As we can use up to 16 childs per node in this
implementation of the Splitted Grid comparing to two in BVH/kdTree, this



4.1 Splitted Grid 25

1 def subdivide(int[] indices, SGNode node, AABB nodeAABB, int& iNode,

int& iIndex, int& iPlane, int depth, int axis):

2 if c <= m_PrimitivesPerLeaf || d >= m_MaxDepth:

3 createLeaf(indices, c, node, iIndex);

4 else:

5 int subIndex = iNode

6 iNode += m_Resolution

7 node = SplittedGridNode(iPlane, subIndex, a, m_resolution)

8

9 // Exact bounding box

10 AABB exact = ComputeExactBox(indices)

11 AABB clipped = ClipBoundingBox(exact, nodeAABB)

12 SaveBoundingPlanes(clipped, axis)

13

14 float gridSubSize = clipped.Size(axis) / m_resolution

15

16 // Calculating bounds of sub node

17 foreach i in m_Resolution:

18 AABB subCellBounds = CalculateChildBox(clipped, i, gridSubSize)

19 int[] subIndices = CalculateOverlappingPrims(subCellBounds,

indices)

20

21 SGNode& sNode = m_Nodes[subIndex + i]

22 subdivide(subIndices, sNode, subCellBounds, iNode, iIndex,

iPlane, depth+1, (axis+1)%3)

Figure 4.1: Pseudo Code - Full implementation of construction of Splitted
Grid. This form of implementation does not use the SAH.

is not the case anymore. Therefore, traversalCost and intersectCost are set
to a similar value.

The SAH method evaluates each combination of axis and resolution with
the cost estimate function presented in equation 3.1, getting the overall
minimum cost estimate. The resulting best axis and resolution are then
used in subdivide() code from figure 4.1.

To speed up construction times a little bit, the surface area heuristic got
changed to only use resolutions of a power of two. The results were pretty
similar, but with shorter construction times, due to fewer combinations to
check for the heuristic.

4.1.2 Traversal

Figure 4.3 contains a full example of resulting pseudo-code for traversing a
Splitted Grid. Note that the pseudo code is based on a recursive scheme,
which is easier to understand, but usually slower than an iterative imple-
mentation. A secondary iterative algorithm has been implemented, which is
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1 def findSplit(int[] indices, int count, AABB aabb, int& bestAxis,

int& bestResolution):

2 float bestCost = m_IntersectCost * count;

3 float invSA = 1.0f / aabb.Area();

4

5 for axis = 0 .. 3:

6 for resolution = 0 .. m_MaxResolution:

7 float gridCellSize = aabb.Size(axis) / resolution;

8 float allCosts = 0.0f;

9

10 for i = 0 .. resolution:

11 bb = CaclulateChildBox(clipped, i, gridCellSize)

12 num = CalculateOverlappingPrims(bb, i);

13 allCosts += bb.Area() * num;

14

15 float thisCost = resolution * m_TraversalCost + m_IntersectCost

* allCosts * invSA;

16

17 if thisCost < bestCost:

18 bestCost = thisCost;

19 bestAxis = axis;

20 bestResolution = resolution;

Figure 4.2: Pseudo Code - Main part of Surface Area Heuristic

fairly straight forward. There are three parameters, which it carries along
on the stack: A pointer to the current node as well as two floats for tNear
and tFar.

The code first checks, if the current node is a leaf node and if so, does
intersection tests. If not, the bounding planes are used to clip the ray and
check, if its even hitting the node. If this is the case, the entry and exit
nodes are calculated as presented in equation . Afterwards, the range of
nodes in-between are recursively called. To save further calculations, the
new tNear and tFar values get calculated and passed to the recursion step.
For further performance optimization, the calculated values can be used to
determine if the ray already hit a primitive. This is the case if tFar > tHit

and leads to an early out.

4.2 Loose Splitted Grid

This section will modify the Splitted Grid to make it loose. Therefore, the
changes from Splitted Grid to Loose Splitted Grid are explained, whereas
everything else will reference to the previous section.

In a loose variant, additional loose boundaries for inner node needs to be
saved. In this implementation, loose boundaries are saved in an additional
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list not overwriting existing list for shortened planes, because it is used in
different ways in traversal. An additional optimization step would be to
merge these two lists. To keep this implementation simpler, this is avoided.

Of course, both boundary plane lists have the same indices per node.
Therefore, no additional offset needs to be saved in inner nodes.

There is a need for a new bit flag for inner nodes, whether they save
primitives on their r+1 -th child or not. This can be bit-shifted into either
one of the available integers. In this implementation, the resolution/planes
integer was used for this purpose.

The rest of acceleration data structure stays the way the Splitted Grid
implementation does it.

4.2.1 Construction

In the construction algorithm, instead of looping through the primitives for
each child node, determining if it overlays the child node, it can now project
the mid-point of a primitive directly to a node, reducing the complexity of
this part of construction.

To calculate the loose bounds, a new pre-procession step needs to be
added though. In a simple implementation, as shown in figure 4.4, the
primitives get looped through, and for the node its center is in, the size of
overlap is calculated and saved. The loose bounding planes are the overall
maximum of these values.

Achieving the inner node primitives is cheaper. In the same pre-procession
step, one can check if a primitive is overly large. Is this the case, the primi-
tive will be added to a r+1 -th leaf node, and the flag will be set.

4.2.2 Traversal

Code changes for traversal are relatively small. First, the algorithm needs
to check, if the inner node primitives flag is set, and do intersection tests
accordingly. This part is implementable in a straight-forward manner, so
there is no need for a code example.

The use of bounding planes differs though, because of newly introduced
loose bounding planes.

The new loose bounding planes must be added at each calculation in-
volving ray clipping, including the projection of the ray to nodeentry and
nodeexit. Therefore, the methods GetDistanceTo(plane0, plane1), Calcu-
lateEntryExitCells(ray, childsize, plane0) and DistanceToChildPlanes() are
changed accordingly.
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1 def traverse(unsigned int node, Ray& ray, float tN, float tF):

2 const SplittedGridNode* cur = &nodes[node]

3 bool hitFound = false

4

5 if current->IsLeaf():

6 foreach(i in cur->GetCount())

7 hitFound |= Intersect(ray, indices[cur->GetOffset() + i])

8 else:

9 int axis = cur->GetAxis()

10 int sign = ray.d[axis] > 1 ? 1 : -1

11

12 // Clip ray against the node’s planes

13 plane0, plane1 = GetBoundingPlanes(cur)

14 pd0, pd1 = GetDistanceTo(plane0, plane1)

15

16 float dN = max(tN, min(pd0, pd1))

17 float dF = min(tF, max(pd0, pd1))

18

19 if dN > dF:

20 return false

21

22 // Compute entry and exit cell

23 float childSize = (plane1 - plane0) / cur->GetResolution()

24 entry, exit = CalculateEntryExitCells(ray, childSize, plane0)

25

26 // Recursively call childs

27 foreach i in entry..exit:

28 cd0, cd1 = DistanceToChildPlanes()

29

30 // If missed, the following can be skipped too.

31 float minN = min(cd0, cd1)

32 if minN > dF:

33 break

34

35 float cN = max(dN, minN)

36 float cF = min(dF, max(cd0, cd1))

37

38 // Traverse the child node recursively and update dF

39 hitFound |= traverse(cur->GetChild(i), ray, cN, cF, step)

40 dF = min(dF, ray.t)

41 return hitFound;

Figure 4.3: Pseudo Code - Full implementation of traversal of Splitted Grid
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1 foreach i = 0 .. count:

2 AABB primitiveAABB = getPrimitiveAABB(i)

3 float center = primitiveAABB.center()

4

5 foreach cell = 0 .. resolution:

6 if bb[cell].Inside(axis, center):

7 primitiveMin, primitiveMax = ExtentOfOverlapping(bb[cell],

primitiveAABB, axis)

8

9 overallMin[cell] = max(overallMin[cell], primitiveMin);

10 overallMin[cell] = max(overallMax[cell], primitiveMax);

Figure 4.4: Pseudo Code - Changes for constructing a Loose Split-
ted Grid: This pre-procession step will calculate loose bounds for all child
nodes in current inner node.
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Chapter 5

Results

The performance, both traversal and construction time, as well as memory
usage of the Splitted Grid and the Loose Splitted Grid were measured for the
CPU. Both acceleration structures need to get evaluated and compared to
other state-of-the-art approaches, to check its necessity in real world appli-
cations. For purpose of these statistics, a variety of test scenes were chosen,
to give a clear look, how the approaches perform in differently structured
scenes.

Section 5.1 will feature a description on how tested scenes are designed.
Section 5.2 first evaluates the parameters used for the Splitted Grid and
Loose Splitted Grid and then compares these methods to other approaches.
Afterwards, previous results and additional tests are used to give an esti-
mated first guess on GPU performance in section 5.2.3.

5.1 Test environment

There are different kind of scenes, which need to be tested, as there are
different kind of real life scenarios. Objects in scenes can be small and
very detailed. In a video game scenario, these would be typically used for
humans or important objects, which are in the direct view of the player.
Other objects in the background or far away from playable area might be
lower resoluted, which often results in very big primitives for floors or walls.
In an open world or architecture, there might be big houses which small
objects inside, where a combination of problems come to mind: A very big
scene, where the size of primitives varies largely, as well as big parts of empty
space (tea-pot-in-the-stadium).

To get a reliable guess, on how well an acceleration structure performs in
random, real world scenarios, a variety of scenes covering different aspects of
problems need to get tested and compared to other approaches. The scenes
used for analysis have been chosen with this in mind. In the following, tested
scenes are further explained:
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• Scene 1 - Head : Head is a quite simple scene with around 17684 smaller
sized primitives which are even distributed. There are two point light
sources in Head scene.

• Scene 2 - Sponza: The popular Sponza scene features a lot of unevenly
distributed primitives, as well as big differences of primitives sizes.
There are primitives at the size of the whole scene, as well as very
small ones. The tested version has 279163 primitives. Sponza is an
architecture scene. There is one point light source in Sponza.

• Scene 3 - Sibenik : Cathedral Sibenik is an architecture scene having
76521 primitives, which similar to Scene 2. It features very big prim-
itives, which are usually a problem for hierarchies based on splitting
room. There is one point light source in Sibenik.

• Scene 4 - Fairy Forest : Fairy Forest is a scene of 172669 primitives,
which features a teapot-in-the-stadium problem, representing high res-
oluted objects in an open area. This scene uses two light sources, one
being a normal point light source, while the other being an infinite
light using an environment map.

• Scene 5 - Dragon: Stanford Dragon is a very popular scene. Featur-
ing 7219045 primitives, it serves the purpose of showing a very high
resoluted object from low distance. The chosen scene uses three point
light sources.

5.2 Test results

All statistics were measured on a system with an Intel Core i7-3720QM
with 2.60 GHz per core and 16 GB DDR3-RAM running Arch Linux (Feb
2013, 64-bit). The processor features 4 physical cores and Hyper-Threading,
resulting in an usage of 8 threads for multi-threaded parts. In the current
implementation, the construction method is not capable of multi-threading,
so only traversal benefits from it. The code is implemented in C++ and an
in-house implemented ray tracing framework called JUNO.

A resolution of 1024 x 768 pixels was used for all scenes. For ray casting,
one sample per pixel was used. For path tracing, a maximum count of four
bounces as well as a maximum of four samples per pixel were used.

5.2.1 Evaluating parameters

In both new approaches, there are a few parameters, which must be chosen
for each scene. Keeping in mind that a Splitted Grid is no binary tree, but
having an arbitrary resolution, usual parameters used in kD-Tree and BVHs
do not work efficiently.
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In uniform construction methods, the resolution and maximum depth of
the tree are set beforehand. In all internal tests while development, the order
of splitting axes in a round robin manner was the most efficient approach,
setting this the standard method for an uniform construction of both a
Splitted Grid and a Loose Splitted Grid.

For a Splitted Grid, the uniform construction method tend to get a very
high memory usage as trade off for a good traversal time, which is the result
of default values for resolution in scenes having a tea-pot-in-the-stadium
problem. Especially with keeping in mind that Splitted Grid does not avoid
duplicated references, high resolutions in deeper depths or higher resoluted
parts of the scene produce a huge memory footprint. A high depth causes
the same problem, which limits the maximum depth of this acceleration
structure. This problem is avoided in most cases by using the SAH method.

In almost all tested scenes, a resolution between 6 to 10 and a depth of 6-
12 has been proven the best. After determining efficient parameters in a SAH
construction, examining the resulting average resolution built by SAH can
also hint parameters for approximately good results at uniform construction.
Therefore, additional effort were put into determining parameters for SAH
construction.

Using a SAH construction algorithm, both axis order and resolution are
calculated heuristically for each node. Therefore, in a SAH construction,
only maximum depth is set by the user. Theoretically, the limits of resolu-
tion, a SAH algorithm can choose, are also free parameters for the user to
decide. As it obviously makes no sense to create one children on an inner
node, because the inner node could then be a leaf node itself, the lower limit
of resolution is always set to 2.

The higher limit for a Splitted Grid was set to 16, as it was the last step
where noticeable differences in tree construction took place. Higher values
resulted in the same tree, which means the SAH never used these values.
Lower values caused a decrease in performance.

For a Loose Splitted Grid SAH, the higher value was set to 2, resulting
in a default resolution of 2 for the whole tree. The SAH construction still
performs better, because of the adaptive choice for splitting axes. The rea-
son, because the resolution was set to this low value, is the loose design of
a Loose Splitted Grid. When having loose borders, the traversal algorithm
needs to check additional nodes on each recursion step. When having a
higher number of resolution, the size of sub-trees which get traversed addi-
tionally increases exponentially, resulting in an explosion of traversal time.

After the Loose Splitted Grid now being a binary tree, which has no du-
plicated references per design choice, the depth can be set to a much higher
value, not causing high memory footprints. In tests, the Loose Splitted Grid
could get a depth of over 20 without issues in memory or performance.

Again, in case of a uniform Loose Splitted Grid construction method,
the values of a SAH build were a good hint, on how to select parameters.
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In evaluating parameter choices for the SAH, figure 5.1 shows results for
Splitted Grids, whereas figure 5.2 shows it for Loose Splitted Grids. The
traversal time is based on a ray casting analysis, using one sample per pixel.

As previously expected, the depth increases memory usage of a Splitted
Grid in a linear way. While the traversal time usually gets better with a
higher depths, the construction time also takes longer. This behavior is
expected, as the higher depth causes more recursion steps for construction
and therefore more calls for the SAH method.

The Loose Splitted Grid scales in a same behavior for performance times,
but having fewer scaling issues with memory usage, as there are no dupli-
cated references.

Notice that, there is a trade off between those three values, depending on
how one chooses the parameters. For the next subsection, values with prior-
ity on very low traversal time while keeping memory usage and construction
time on a relatively low level are used.

5.2.2 Comparison with different acceleration structures

For comparison with bounding volume hierarchies, an implementation of
a BVH using surface area heuristic and a kD-Tree using spatial median
split were used. Note that a SAH kD-Tree would be a minor performance
advantage against a SMS constructed tree, but the given framework had
no working implementation of this construction variant, so a SMS tree was
used. The BVH implementation uses 32 bytes per node, which is explained
in detail in section 5.2.3. The kD-Tree implementation saves 8 bytes per
node.

SG and LSG reference the Uniform construction method, whereas SG-
SAH and LSG-SAH reference the construction using surface area heuristics.

Figure 5.3 until 5.7 show analyses for tested scenes. In the detailed
overview (c) of each figure, it shows absolute values of the results. The row
trav1 reflects the results for ray casting the scene. This test, using no shadow
rays and textures, provides a good example on how good the acceleration
structures perform for primary rays. The second row listing trav2 shows
results for path tracing the scene. The construction time is listed as constr
and mem refers to memory consumption. Furthermore, the row param lists
used parameters, where r stands for resolution and d stands for maximum
depth. In cases of SAH construction for Splitted and Loose Splitted Grid,
resolution means a maximum resolution the SAH algorithm may use. The
parameter for minimum primitives per leaf node was always set to 4.

Evaluating the figures, there are some things noticeable:

• A SAH Splitted Grid behaves similarly in most of the scenes. In ray
casting runthroughs, it usually outperforms BVH, and in some cases
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even a kD-Tree. Note, that the kD-Tree implementation uses a SMS
approach, so a SAH-kD-Tree might still be a little bit faster.

• An Uniform Splitted Grid has a high memory footprint, highly depend-
ing on the choice of parameters. When testing around with different
parameters, it turns out that an Uniform Splitted Grid can outperform
a kD-Tree in any case, but often has a memory usage at an extremely
high level. The high memory usage is due to the default resolution
in uneven distributed scenes, where high resolution deeper in the tree
cause an overload of duplicated references.

• The SAH variant of the Splitted Grid is not necessarily faster than the
Uniform variant, but usually serves a much better fit scene and there-
fore a lower memory footprint. A higher maximum depth would often
cause better traversal performances for the SAH Splitted Grid, but
then increasing the amount of memory used, as explained in Section
5.2.1.

• While the Loose Splitted Grid is usually much slower, the relative
performance compared to competitors, varies. In the Sibenik scene,
the LSG has a traversal time up to 7 times higher than its competitors.
In the Dragon scene, it is even quicker than an Uniform SG. When
comparing the scenes, it seems that the current implementation of
the Loose Splitted Grid has severe problems traversing scenes with a
teapot-in-the-stadium (Scene 2 and 3) problem. On even distributed
scenes, it performs better (Scene 1 and 5).

• In both architectural scenes, the SAH Loose Splitted Grid seems to
be inferior to the Uniform construction method in a level, that does
not seem right. This indicates some issues in the design of the LSG
methods, which have not been addressed yet.

• The Loose Splitted Grid has great memory usage in comparison to
other approaches.

• In Dragon scene, which has the biggest amount of primitives by far,
the kD-Tree is slower than the BVH-Tree. This is due to the fact, the
kD-Tree does not use a SAH construction algorithm.

As a result of the fairly poor results of the Loose Splitted Grid in some
tested scenes, the surface area of resulting trees has been analyzed, as well
as some statistics on how the trees are traversed have been created. As
presented in figure 5.8, the results differ vastly between the scenes. Mostly,
the Loose Splitted Grid is slower, because a lot additional sub-trees are
traversed due to the loose boundary planes. In case of Sponza and Sibenik
scene, this behavior creates a vast amount of primitive intersection tests in
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addition, which result in the very slow performances shown in figure 5.4 and
5.5.

5.2.3 Estimate of GPU performances

After previous analyses, which are all based upon a CPU implementation
of the algorithm, the performance and therefore value of this technique on
graphic cards may differ largely. A GPU implementation is not part of this
thesis, leaving room for speculation. Usually, the memory throughput and
with this stack accesses are a first clue, on how an algorithm performs on a
GPU. This is caused by the way a GPU is designed.

Figure 5.9 shows a brief comparison of these indicators with a BVH. The
BVH is currently the most used acceleration structure in GPU and real time
applications, because of its fast construction time and predictable memory
usage while having a fast traversal method.

In the Splitted Grid, the amount of memory per stack entry is 12 bytes,
4 bytes for the node index as well as two floats for tNear and tFar. The
node itself has 8 bytes as mentioned previously. Additionally, on each inner
node traversal, 8 bytes for two floats from the planes array are accessed.
In the Loose Splitted Grid, the amounts are the same. But on each inner
node, it accesses 16 bytes, because of the loose bounding planes in addition.
In a BVH, the stack only saves a pointer to the node, which can also be
the index of the node, so 4 bytes. The node is 32 bytes, consisting of a
bounding box which has 6 planes, so 6 floats, as well as two integers. The
stack memory throughput is simply the amount of stack access, multiplied
by the size of a stack entry. The node memory throughput is the memory,
is the node itself plus linked memory, which is accessed while traversing
inner nodes, like bounding planes, multiplied by the number of inner node
traversals from figure 5.8.

The results are similar to those in previous subsection. In scene 2 and
3, the Loose Splitted Grid has a very high amount of memory throughput,
which is predictable when seeing the amount of inner nodes traversed in
figure 5.8. The Splitted Grid has a relatively small memory throughput.
This is due to the early out, which often decreases the amount of stack
pops. This makes it an acceleration structure worthy testing out in a GPU
implementation.

When comparing stack and node memory usages, the Splitted Grid has a
very good memory throughput compared to BVH, in terms of node memory
accesses. The memory throughput on the stack is higher though.

Keep in mind when comparing this, that the BVH uses standard travers-
ing implementation as popular in CPU raytracers, and no GPU-oriented
stack-less method as presented [HDW+11].

Note, that there is the possibility of decreasing the amount of mem-
ory throughput and stack push/pops in the Splitted Grid by changing the
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traversal algorithm. The values tNear and tFar are calculated on each level
and put on stack. It might be faster on the GPU, to dump them from
stack and therefore calculating them on-the-fly more often, with some small
modifications.

Another type of traversal algorithm could save intervals of entry/exit
nodes by saving offset and counts to the stack, instead of pushing each node
individually to the stack. This variant could vastly decrease the amount of
stack pushes/pops.
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(a) Scene 1: Head
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(b) Scene 2: Sponza
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(c) Scene 3: Sibenik
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(d) Scene 4: Fairy Forest
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(e) Scene 5: Dragon

Scene mem depth=4 mem depth=11 mem depth=18

Head 273kb 2276kb 4109kb

Sponza 2300kb 37709kb 65835kb

Sibenik 627kb 11237kb 20104kb

Fairy 1240kb 21234kb 44189kb

Dragon 37336kb 705242kb >1500000kb

(f) Memory Usage

Figure 5.1: Splitted Grid SAH Parameter Analysis: As the memory
usage scales almost linearly, only three example values are given.
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(a) Scene 1: Head
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(b) Scene 2: Sponza
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(c) Scene 3: Sibenik
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(d) Scene 4: Fairy Forest
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(e) Scene 5: Dragon

Figure 5.2: Loose Splitted Grid SAH Parameter Analysis: In most
cases, all results above a depth over 13-18 are the same, because in each
case the same tree is built. Variations in the time are due to an error of
measurement and natural variations in computing time. As far as traversal
time goes, the higher maximum depth, the lower is resulting traversal time.
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(a) Tested scene, n=17684
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(b) Speed comparison

Head SG SG-SAH LSG LSG-SAH BVH KD

trav1 0.068s 0.068s 0.095s 0.088s 0.076s 0.070s

trav2 0.864s 0.846s 1.212s 1.214s 0.868s 0.856s

constr 0.154s 0.123s 0.018s 0.042s 0.029s 0.170s

mem 5086kb 779kb 221kb 201kb 421kb 1592kb

param
r = 8 r = 16 r = 4 r = 4 d = 25 d = 25
d = 10 d = 6 d = 25 d = 25

(c) Detailed overview of results

Figure 5.3: Analysis for scene 1 - Head Scene

(a) Tested scene, n=279163
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(b) Speed comparison

Sponza SG SG-SAH LSG LSG-SAH BVH KD

trav1 0.186s 0.187s 0.675s 0.848s 0.214s 0.166s

trav2 9.734s 13.681s 49.812s 62.715s 10.788s 11.277s

constr 2.339s 1.653s 0.364s 0.812s 0.510s 1.276s

mem 64955kb 6916kb 4183kb 3198kb 6341kb 12568kb

param
r = 8 r = 16 r = 2 r = 4 d = 25 d = 25
d = 10 d = 6 d = 25 d = 25

(c) Detailed overview of results

Figure 5.4: Analysis for scene 2 - Sponza Scene
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(a) Tested scene, n=76521
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(b) Speed comparison

Sibenik SG SG-SAH LSG LSG-SAH BVH KD

trav1 0.177s 0.173s 0.631s 1.015s 0.179s 0.149s

trav2 9.488s 11.594s 37.129s 69.796s 13.372s 14.252s

constr 0.719s 0.437s 0.096s 0.215s 0.135s 0.375s

mem 21229kb 2041kb 1133kb 897kb 1827kb 3018kb

param
r = 8 r = 16 r = 2 r = 4 d = 25 d = 25
d = 10 d = 6 d = 25 d = 25

(c) Detailed overview of results

Figure 5.5: Analysis for scene 3 - Sibenik Scene

(a) Tested scene, n=172669
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(b) Speed comparison

Fairy SG SG-SAH LSG LSG-SAH BVH KD

trav1 0.200s 0.206s 0.393s 0.383s 0.214s 0.213s

trav2 6.413s 7.230s 14.552s 9.578s 5.190s 5.480s

constr 1.140s 0.893s 0.219s 0.519s 0.307s 0.587s

mem 27107kb 3525kb 2183kb 2031kb 4020kb 3752kb

param
r = 8 r = 16 r = 4 r = 4 d = 25 d = 25
d = 10 d = 6 d = 25 d = 25

(c) Detailed overview of results

Figure 5.6: Analysis for scene 4 - Fairy Forest Scene
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(a) Tested scene, n=7219045
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(b) Speed comparison

Dragon SG SG-SAH LSG LSG-SAH BVH KD

trav1 0.339s 0.213s 0.252s 0.244s 0.189s 0.288s

trav2 9.163s 5.300s 6.335s 6.546s 4.027s 7.920s

constr 16.419s 36.507s 10.257s 22.394s 15.256s 16.774s

mem 88925kb 118660kb 89093kb 79855kb 172102kb 53233kb

param
r = 8 r = 16 r = 4 r = 4 d = 25 d = 25
d = 7 d = 6 d = 25 d = 25

(c) Detailed overview of results

Figure 5.7: Analysis for scene 5 - Dragon Scene
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SG SG-SAH LSG LSG-SAH

Head

sa 2,682 2,582 2,309 2,115

pit 1,256,137 1,554,753 3,674,168 4,083,506

tin 2,450,626 2,396,075 4,850,796 4,903,404

tln 85,934 52,751 701,910 374,400

Sponza

sa 2,502,832,128 1,884,039,552 3,608,101,120 2,301,579,008

pit 7,148,465 16,816,158 55,767,103 137,306,763

tin 30,844,931 18,765,122 121,796,021 80,391,290

tln 4,511,333 6,165,578 13,622,717 28,324,701

Sibenik

sa 77,896 58,381 108,004 93,804

pit 7,408,410 11,329,798 56,683,329 151,301,282

tin 21,771,987 25,467,874 106,762,892 116,277,187

tln 4,009,849 3,931,449 17,754,913 49,498,327

Fairy Forest

sa 5,731 3,436 3,960 4,253

pit 11,334,281 17,943,501 384,159,544 38,377,664

tin 28,164,253 30,136,692 55,789,704 52,270,831

tln 10,566,321 4,612,806 15,070,382 15,234,843

Dragon

sa 3,910,959 4,867,261 4,805,505 4,596,750

pit 59,099,747 19,836,105 10,710,582 10,512,202

tin 18,462,513 20,300,633 30,761,915 30,392,431

tln 2,550,212 3,198,146 5,524,866 4,071,065

Figure 5.8: Traversal comparison: This figure shows the size of surface
area for each given scene-acceleration structure combination as sa. The row
pit shows primitive intersection tests whereas tin and tln stands for traversed
inner nodes and traversed leaf nodes These results can be an indicator on
how well the tree is built and reflect performance issues. The parameter
used for tests where the same as in previous analyses. For this analysis, the
ray casting approach was used.
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SG SG-SAH LSG LSG-SAH BVH

Head

push 3,716,016 3,397,572 7,886,493 7,561,195 4,249,241

pop 2,014,812 1,799,482 5,228,711 4,835,030 4,249,241

stack mem 65.58mb 59.48mb 150.09mb 141.86mb 32.42mb

node mem 56.75mb 55.24mb 190.40mb 189.91mb 143.01mb

Sponza

push 40,116,784 30,600,991 141,342,441 112,668,664 37,851,327

pop 20,391,289 18,697,816 70,213,106 73,521,058 37,851,327

stack mem 692.46mb 564.18mb 2421.06mb 2130.77mb 288.78mb

node mem 740.40mb 476.54mb 4750.08mb 3282.79mb 1225.62mb

Sibenik

push 30,364,763 34,311,111 131,615,155 168,300,563 27,459,098

pop 16,295,460 22,591,815 64,894,307 115,881,741 27,459,098

stack mem 533.98mb 651.20mb 2248.87mb 3252.21mb 209.50mb

node mem 528.91mb 612.91mb 4208.14mb 4813.26mb 901.68mb

Fairy Forest

push 41,276,918 37,782,311 81,520,006 79,526,630 35,022,499

pop 22,164,962 23,613,104 56,139,486 52,620,765 35,022,499

stack mem 726.03mb 702.61mb 1575.39mb 1512.31mb 267.20mb

node mem 725.24mb 724.97mb 2243.19mb 2110.21mb 1148.96mb

Dragon

push 24,004,047 27,985,104 47,836,258 45,899,883 22,821,350

pop 14,492,154 18,751,708 31,671,835 29,835,165 22,821,350

stack mem 440.55mb 534.87mb 909.90mb 866.72mb 174.11mb

node mem 442.03mb 489.04mb 1215.63mb 1190.44mb 739.84mb

Figure 5.9: GPU comparison: This figure shows a comparison of stack
accesses (amount of pops and pushes), written as pop / push, as well as the
memory throughput for stack and nodes, which is called stack mem / node
mem.
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Conclusion and Discussion

In summary, the analysis in Chapter 5 showed capabilities of the Splitted
Grid. For ray casting, the traversal speeds are on same or better level than
common techniques like a BVH or kD-Tree. For pathtracing, the perfor-
mance differs, the Splitted Grid competes overall well against it’s competi-
tors, with some minor flaws. Splitted Grid can not compete against a BVH
in construction time. However, its SAH method is in many cases on a similar
level then our kD-Tree implementation, while having a slight advantage in
memory usage.

An important issue to work on is the traversal speed of the Loose Splitted
Grid. Unfortunately, the Loose variant, while having a very good average
memory consumption and construction time compared to other approaches
tested, could not compete with other methods in traversal speed. While the
current construction methods are very fast, the traversal speed performs
poorly. In future research, new concepts to achieve better traversal perfor-
mance for the Loose Splitted Grids need to be developed for a performance,
which is expected to achieve.

For the Splitted Grid, the current traversal is heavily optimized. The
iterative implementation saves tNear, tFar and the node index on the stack.
While this is expected, the number of stack accesses might be higher than it
needs to be. Especially for an use of the Splitted Grid in a GPU raytracer, it
is possible to reduce the amount of stack accesses by instead saving intervals
of (entryNode, count). Additionally, tNear and tFar could get calculated on
use, which reduces the amount of variables on the stack, therefore reducing
memory throughput further. In this scenario, a trade-off between stack
usage and performance needs to be evaluated.

The current construction method is fairly simple, giving space for more
advanced construction concepts. In current implementation, the algorithm
is not capable of multi-threading, which could be a first feature to add -
especially with GPU computing in mind.

As the usage of real time raytracers gets popular, the analysis in Sec.
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5.2.3 gave a first hint in how well the acceleration structures may perform on
a GPU, which has naturally a different kind of data procession and therefore
differs in the way, the algorithm gets computed. In the first priority, a GPU
implementation of the algorithm needs to be implemented and evaluated.

Furthermore, as it is possible to implement a loose variant of a Splitted
Grid, there is an option to create an implicit variant of the algorithm. A
similar approach, which was done in [EBM12], created a similar designed
variant of a BVH using no additional memory for an acceleration structure
by sorting primitive indices in a manner, so that a temporary BVH tree
can be calculated on traversal time at any point. When using the uniform
construction algorithm for the Splitted Grid, the resolution as well as split-
ting axis for each point is predictable. Having no duplicated references,
the design of Loose Splitted Grid satisfies all criteria needed for an implicit
approach built upon.
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