1st International Workshop on Multimedia Content Generation and Evaluation (McGE), October 29, 2023

Nonword-to-Image Generation Considering Perceptual Association of Phonetically Similar Words

<u>Chihaya Matsuhira</u>, Marc A. Kastner, Takahiro Komamizu, Takatsugu Hirayama, Keisuke Doman, Ichiro Ide Nagoya University, Japan

Text-to-Image (T2I) generation

- Recent innovation in **Text-to-Image (T2I) generation** models
 - Stable Diffusion^[1] is one such example

Example of T2I generation using Stable Diffusion

a hamburger floating in the sky an astronaut swimming under the sea

[1] Rombach et al., "High-resolution image synthesis with latent diffusion models", CVPR 2022.

How Stable Diffusion works

- Stable Diffusion^[1]: Open-source text-to-image generation model
 - Generates images from embeddings of the CLIP text encoder
 - CLIP^[2]: Vision & language foundation model
 - > Consists of text and image encoders co-trained via contrastive learning
 - Subword tokenization: Tokenizes each word in a text into subwords

[2] Radford et al., "Learning transferable visual models from natural language supervision", ICML 2021.

Problem of T2I Generation Models: Nonword Input

- They generate unintuitive images when input contains **nonwords**
 - Nonwords := "Nonsense words that have no definition within a language"

[3] Köhler, "Gestalt Psychology", H. Liveright, 1929.

[4] Goldinger et al., "Form-based priming in spoken word recognition: The roles of competition and bias", J. Exp. Psychol. Learn. Mem. Cogn., 1992.

Problem of T2I Generation Models: Tokenization

- Subword tokenization does not work for nonwords
 - It splits nonwords into unmeaningful subwords
 > "fouse" → 'f' + 'ouse' (two subword tokens)
 > Cf. "house" → 'house' (one token)
- Making nonword-to-image generation unintuitive

Research Goal

- More intuitive nonword-to-image generation
- Approach
 - Replace CLIP text encoder with our new pronunciation encoder
 - Discard the use of subword tokenization

> Our **phoneme-level tokenization** considers **phonetic similarity** of an input

Proposed Method: Pronunciation-to-Image Generation

- Our framework consists of two modules:
 - Pronunciation Encoder: Pronunciation -> CLIP embedding
 - Image Generator (Stable Diffusion): CLIP embedding* -> Images

IPA-based Phoneme Embedding (1/2)

- IPA: "International Phonetic Alphabet"
- IPA chart^[5] is used as a source of phonetic relationships
 - Defines phonetic properties of each phoneme/phone in any language

8

Magnitude Vector

- Enables computing phonetic similarity
- Compute a **magnitude vector** for each phoneme

IPA Chart for Consonants

International Phonetic Association, Handbook of the International Phonetic Association: A guide to the use of the [5] International Phonetic Alphabet, Cambridge University Press, 1999.

IPA-based Phoneme Embedding (2/2)

Aim to assign a **phonetically continuous** token for each phoneme

- 1. Prepare magnitude vector based on phonetic property
- 2. Multiply it with a trainable weight matrix
- 3. Obtain a phoneme embedding reflecting the phonetic property

Distillation of CLIP Text Encoder

- Distill the CLIP text encoder with text-pronunciation pairs
 - 1. Prepare pronunciation for each text in training data^[6]
 - Use existing pronunciation dictionaries
 - 2. Train a student encoder (**IPA-CLIP**) to output the identical embedding to the teacher encoder with the corresponding pronunciation input

[6] Carlsson et al., "Cross-lingual and multilingual CLIP", LREC 2022.

Proposed Method: Pronunciation-to-Image Generation¹¹

- Our framework consists of two modules:
 - Pronunciation Encoder: Pronunciation -> CLIP embedding
 - Image Generator (Stable Diffusion): CLIP embedding* -> Images

CLIP Text Encoder Explained in Detail

Pronunciation-to-Image Generation

- 1. Reconstruct $L \times D_{hidden}$ -dim. embedding from the D_{CLIP} -dim. one
 - Train a multilayer perceptron
- 2. Insert it into a pretrained Stable Diffusion model

Qualitative Evaluations

- Asked English speakers on **Amazon Mechanical Turk**
 - Two trials with different instructions

by either

(Comparative)

- Trial 1: Choose which images depict similar-sounding words?
- Trial 2: Choose which images are more intuitive?
- Prepared 270 questions/nonwords from an English nonword dataset^[7]

14

Sabbatino et al., ""splink" is happy and "phrouth" is scary: Emotion intensity analysis for nonsense words.", WASSA 2022.

Results

- Proposed method wins over the comparative method
 - Generated images of the proposed method:
 - \checkmark Depict the concepts of their phonetically similar words more accurately
 - ✓ Match human expectations more closely
- Proposed method has a larger gain in Trial 1 than Trial 2
 - Intuitiveness involves more factors other than phonetic similarity

Image Generation Example

What kind of imagery does "Flike" evoke in your mind?

Conclusion

- Pronunciation-to-Image generation robust against nonwords
 - Motivation: More intuitive nonword-to-image generation
 - Approach: Associate nonwords with their phonetically similar words
- Evaluation showed effectiveness of our method over Stable Diffusion
 Depict phonetically similar (similar-sounding) words more accurately
 Generate images more intuitive to humans

- Future Work
 - Extend to other languages and perform cross-lingual comparison
 E.g., German, Japanese, and Chinese