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ABSTRACT
Text-to-Image (T2I) generation has long been a popular field of
multimedia processing. Recent advances in large-scale vision and
language pretraining have brought a number of models capable of
very high-quality T2I generation. However, they are reported to
generate unexpected images when users input words that have no
definition within a language (nonwords), including coined words
and pseudo-words. To make the behavior of T2I generation models
against nonwords more intuitive, we propose a method that consid-
ers phonetic information of text inputs. The phonetic similarity is
adopted so that the generated images from a nonword contain the
concept of its phonetically similar words. This is based on the psy-
cholinguistic finding that humans would also associate nonwords
with their phonetically similar words when they perceive the sound.
Our evaluations confirm a better agreement of the generated im-
ages of the proposed method with both phonetic relationships and
human expectations than a conventional T2I generation model.
The cross-lingual comparison of generated images for a nonword
highlights the differences in language-specific nonword-imagery
correspondences. These results provide insight into the usefulness
of the proposed method in brand naming and language learning.

CCS CONCEPTS
• Computing methodologies→ Phonology / morphology; •
Information systems→ Multimedia and multimodal retrieval.
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Figure 1: Images generated by (a) an existing Text-to-Image
(T2I) generation [31] and (b) the proposed pronunciation-
aware image generation for three nonwords having various
phonetic similarities to “House” and “Mouse”. While the ex-
isting method mostly generates unrelated images for these
nonwords, the proposed method draws either the concept
of a house or a mouse depending on the phonetic similarity
between the nonword and each of the two existing words.

1 INTRODUCTION
Text-to-Image (T2I) generation is the task of generating images that
match a given text prompt. The recent innovation of large-scale
multimodal pretraining has brought a number of T2I generation
models performing very well [2, 19, 22, 25, 31], allowing us to
easily generate plausible images that match a given text input. For
instance, DALL·E [22] has shown a remarkable capability of T2I
generation driven by a large-scale vision and language pretrained
model called Contrastive Language-Image Pretraining (CLIP) [20].
Subsequently, a more lightweight and open-source latent diffusion
model, Stable Diffusion [31], has been proposedwhichmade it much
easier for even non-experts to generate images for text inputs.

In psycholinguistics, it is known that even meaningless words
(nonwords) can still evoke specific visual impressions in human
minds [8]. For instance, hearing the sound of the pseudo-word
“Bouba” tends to give the impression of a rounder shape than another
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pseudo-word “Kiki” [12, 21]. These human-intrinsic nonword-to-
imagery mappings are often used effectively in brand naming and
language learning. For instance, names of characters and brands are
designed so that the sounds of those names give impressions that
match the visual characteristics of the target. Besides, since these
sound-meaning correspondences are somewhat language-specific,
being aware of their cross-lingual differences makes language learn-
ing much more effective. Existing T2I generation models, however,
are not designed to capture these human intentions nor intuitions,
causing cases where generated images do not match users’ expec-
tations [9] (See Fig. 1(a)).

The lack of criteria for processing nonwords can also increase the
uncontrollability and vulnerability of language models [3, 18]. For
example, it is reported that the English nonword “Uccoisegeljaros”
can induce visual characteristics of birds in several English T2I
generation models [3, 18]. This behavior not only seems unintuitive
to humans but also could be used as a codeword to maliciously
mislead these models to induce certain imagery.

To improve the robustness of the T2I generation models against
nonwords and make their behavior more intuitive, we focus on the
human nature of associating a nonword with its similar-sounding
words. When English speakers hear a nonword “Fouse”, they might
recall its similar-sounding words such as “House” and “Mouse”.
Psycholinguistic findings suggest that the human brain recalls more
phonetically similar words more quickly [5], indicating that the
nonword “Fouse” would remind people of the word “House” more
quickly and dominantly than “Mouse”. Based on this, we construct
a model by hypothesizing that (1) visual impressions evoked by any
nonword are influenced by the visual characteristics of the concepts
of phonetically similar words and (2) generating images containing
the concept of a more phonetically similar word matches human
expectations than those containing the concept of other words.

To this end, this paper proposes a method to generate images
for a nonword considering phonetic similarity. To precisely de-
scribe the pronunciations of nonwords and calculate the phonetic
similarity among words, the proposed method takes an array of
International Phonetic Alphabet (IPA) symbols as an input. The
pronunciations of existing words, which are used both in training
and inference, are automatically converted using pronunciation
dictionaries. The pronunciations of nonwords, which appear only
in inference, will be specified by users, either by pronouncing the
sound or more directly by typing phonetic symbols. Using IPA sym-
bols, for instance, the existing word “House” is converted into its
pronunciation /"haUs/. If a user expects the nonword “Fouse” to
rhyme with “House”, it will be transcribed as /"faUs/. The effect of
phonetic similarity on the proposed image generation is illustrated
in Fig. 1(b). Given a nonword /"faUs/, the proposed method gen-
erates images of its phonetically similar word “House” ( /"haUs/)
rather than “Mouse” ( /"maUs/). Meanwhile, given another non-
word /"baUs/, it generates images of “Mouse” rather than “House”.
This is because, according to phonetic features, the phoneme /f/ is
more phonetically similar to /h/ than /m/ and the phoneme /b/ is
more phonetically similar to /m/ than /h/. Such behavior requires
knowledge of phonetic similarity and thus cannot be achieved just
by replacing text inputs with pronunciation ones.

The proposed method is based on an existing T2I generation
model, Stable Diffusion, which is a latent diffusion model [23]

trained on a huge number of image-text pairs [26]. It employs the
text encoder of CLIP to convert text inputs into conditioning vectors.
We propose a method to substitute these text-based conditioning
vectors with pronunciation-based ones obtained via a distillation
approach [14], realizing pronunciation-aware image generation
without retraining Stable Diffusion with additional training data.

2 RELATEDWORK
2.1 Vision and Language Pretraining
The semantic gap between vision and language modalities has long
been a primary concern in multimedia processing. Recently, us-
ing contrastive learning with a huge number of image-text pairs,
OpenAI successfully trained Contrastive Language-Image Pretrain-
ing (CLIP) [20], which has achieved great success, especially in
vision and language processing. CLIP consists of two encoders for
two modalities: image and text encoders. The bimodal embedding
space shared by the two encoders enables the similarity calculation
between images and texts. This similarity calculation is powerful
enough to even outperform state-of-the-art methods in several
multimodal tasks without additional training.

So far, many CLIP extensions and applications have been pro-
posed. Some researchers proposed encoders that map data of new
modalities into the CLIP bimodal embedding space, such as multi-
lingual texts [1], audio data [32], and phonetic transcription [14],
enabling the similarity calculation among the image, the text, and
the new modalities. The extension to phonetic transcription [14]
considered the phonetic similarity between words with the aim of
allowing users to input nonwords. Other studies applied CLIP to
other vision-language tasks ranging from object detection [28] and
image captioning [4] to text-to-image generation [2, 19, 22, 25, 31].

In the proposed method, the CLIP extension to phonetic tran-
scription [14] is employed to convert a pronunciation input into
a CLIP embedding vector. This enables nonwords to be input into
the language model and the subsequent image generation model,
thus realizing a nonword-to-image generation.

2.2 Recent Text-to-Image Generation Trend
The recent advance in Text-to-Image (T2I) generation owes greatly
to the emergence of diffusion models [23, 29], with the help of large-
scale pretrained models as introduced in Section 2.1. As opposed to
conventional generative models like Generative Adversarial Net-
works (GANs) [6], which generate an image directly from a latent
noise vector, diffusion models work by removing noise little by little
from the noise vector until a clear image is obtained. Although this
has resulted in many T2I generation models such as GLIDE [19],
DALL·E 2 [22], and Imagen [25], these diffusion models had a prob-
lem of high computational costs required in their pixel-level denois-
ing process. Latent diffusion models [23] solved this by applying
the denoising procedure to latent vectors instead of images. This,
combined with the CLIP text encoder, yielded an efficient but pow-
erful T2I generation model called Stable Diffusion [31] which can
be run even on a personal computer.

Yet, these models are not designed for text inputs containing
nonwords, which could be problematic in some aspects. One of
the concerns reported [9] is that, when users input nonwords, they
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Figure 2: Framework of the proposed pronunciation-aware image generation using IPA-CLIP [14] and Stable Diffusion [31]. If a
pronunciation of a nonword is input, it generates an image representing the concept of its phonetically similar word.

generally do not output images that match their expectations. An-
other problem is that the lack of criteria for processing nonwords
could lead to an unintended use of these T2I generation models.
Studies [3, 18] suggest that many models based on the CLIP text en-
coder implicitly associate certain nonwords with specific meanings.
For example, Millière [18] proposed the nonword “Uccoisegeljaros”
associated with the concept related to bird species. This is caused
by the subword tokenization adopted in the text encoder [27] be-
cause it regards the nonword as a sequence of several subparts
of words meaning birds in several major foreign languages (i.e.,
Italian “Uccelli”, French “Oiseaux”, German “Vögel”, and Spanish
“Pájaros”). Such a concatenation of subwords of foreign words
meaning a specific concept can easily produce nonwords that can
fool existing T2I generation models [18].

This paper controls Stable Diffusion by inserting conditioning
pronunciation vectors computed based on phonetic similarity into
a pretrained Stable Diffusion. This makes images generated for non-
words represent the concepts of their phonetically similar words,
making the image generation more robust against nonwords.

3 IMAGE GENERATION FOR NONWORDS
The proposedmethod is built upon two existingmethods: Stable Dif-
fusion [31] and IPA-CLIP [14]. Stable Diffusion is an open-source la-
tent diffusion model for Text-to-Image (T2I) generation [23], which
was trained on a huge number of image-text pairs in Large-scale
Artificial Intelligence Open Network (LAION) dataset [26]. For
conditioning image generation on text prompts, it uses text fea-
tures computed by the text encoder of Contrastive Language-Image
Pretraining (CLIP) [20] which does not process nonwords in a pho-
netic manner. Hence, we replace this with IPA-CLIP, an extension of
CLIP for a pronunciation input modality constructed by training an
additional pronunciation encoder via distillation of the CLIP text en-
coder. Its pronunciation encoder maps a pronunciation written with
International Phonetic Alphabet (IPA) into the same embedding
space as CLIP. IPA-CLIP is selected because it calculates embedding
vectors for input pronunciations, especially nonwords, based on
pronunciation similarity defined in phonetics.

The framework of the proposed pronunciation-aware image
generation is illustrated in Fig. 2. The proposed method assumes
that the input text has been converted to IPA symbols in advance.
Accordingly, a pronunciation and a noise vector are input to gener-
ate an image. To condition Stable Diffusion on the pronunciation
input, we substitute the conditioning vectors of the CLIP text en-
coder used in Stable Diffusion with the pronunciation-based ones
computed by IPA-CLIP. This approach requires much less compu-
tational costs and resources than retraining Stable Diffusion using
pronunciation-image pairs.

3.1 Phonetic Embedding Vector Calculation
For the calculation of embedding vectors for pronunciation inputs,
we use the framework of IPA-CLIP, which enables mapping from
an array of phonetic symbols called International Phonetic Alpha-
bet (IPA) to the text embedding space of CLIP. Its pronunciation
encoder is trained via distillation of the CLIP text encoder using
text-pronunciation pairs. For instance, given the input phoneme
array /@ "foUtoU "2v @ "kæt/ (IPA transcription for “a photo of a
cat”), the pronunciation encoder learns to produce the embedding
vector identical to the one calculated by the CLIP text encoder for
the text prompt “a photo of a cat”.

The phoneme tokenization method in IPA-CLIP considers artic-
ulatory phonetic features, which allows the model to calculate em-
bedding vectors even for nonwords. Articulatory phonetic features
of a phoneme refer to how the phoneme is pronounced. Consonants
are assigned three features (place of articulation, manner of articu-
lation, voicing), while vowels also have three other features (height
of the tongue, backness of the tongue, roundedness of lips). Based
on these features, for example, it is deduced that the consonant /b/
(bilabial, plosive, voiced) is more similar to /m/ (bilabial, nasal,
voiced) than /h/ (glottal, non-sibilant fricative, voiceless). In
contrast, because the features for vowels are considered continu-
ous, the vowel /i/ (high, front, unrounded) is regarded as more
similar to /e/ (high-mid, front, unrounded) than /a/ (low, front,
unrounded), since the height feature ranges continuously between
high and low.
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Figure 3: Evaluation procedure of the original-word-retrieval task using the existing word “Dolphin” and the nonword /"tAAlf@n/
as an example.

By expanding this concept to the entire word, IPA-CLIP calcu-
lates an embedding vector for the pronunciation of a nonword so
that the vector becomes close to those of its phonetically similar
existing words. For example, given an input /"faUs/ (pronunciation
of a nonword “Fouse”), its pronunciation encoder would compute a
phonetic embedding vector similar to the one for “House” (/"haUs/)
rather than “Mouse” (/"maUs/), since the pronunciation of “Fouse”
is more phonetically similar to that of “House”. At the same time,
since words having a high semantic similarity to “House”, such as
“Home”, are located close to “House” in the CLIP embedding space,
the embedding vector of /"faUs/ may also be close to those of such
semantically similar words. IPA-CLIP determines which phoneti-
cally similar words to approximate based on both pure phonetic
similarity and word frequency, as this balance is learned via model
training. For instance, even though the pronunciation /"faUs/ is
phonetically similar to both “House” and “Souse” (/"saUs/), it would
prefer “House” if it is a more frequently seen word in the training
data. These characteristics of phonetic embedding vectors would
also contribute to the image generation described in Section 3.2.

3.2 Inserting Phonetic Embedding Vector into
Stable Diffusion

The text condition of Stable Diffusion requires an𝐿×𝐷1-dimensional
last-hidden-state output of the Transformer in the CLIP text en-
coder (𝐿 is themaximum length of tokens of the Transformer), while
the embedding vector calculated by IPA-CLIP is a 𝐷2-dimensional
final output of the CLIP text encoder. In the CLIP architecture, the
𝐷2-dimensional output is computed from the 𝐿 × 𝐷1-dimensional
last-hidden-state output. Hence, to insert the embedding vectors
of IPA-CLIP into Stable Diffusion, we need to perform this oper-
ation inversely and reconstruct 𝐿 × 𝐷1-dimensional vectors from
𝐷2-dimensional phonetic embedding vectors.

To learn this inverse function, this paper takes the straightfor-
ward strategy of training amulti-layer perceptron. It is trained using
pairs of a 𝐷2-dimensional final output and an 𝐿 × 𝐷1-dimensional
intermediate output of the original CLIP. After training this, we
can obtain the last-hidden-state output vectors that correspond
to the phonetic embedding vector of an input pronunciation. The
obtained vectors are then inserted into Stable Diffusion along with
a noise vector z to synthesize an image.

4 QUANTITATIVE EVALUATION
To quantitatively evaluate the influence of phonetically similar
words on the proposed nonword-to-image generation, we perform
an original-word-retrieval task of nonwords using the class names
of CIFAR-100 image classification dataset [11]. Note that the term
“Nonword” hereafter will denote the pronunciation of a non-existing
word, and thus not the spelling (e.g., “a nonword /"faUs/”).

To simplify the settings, this evaluation focuses only on the non-
words that surely have a certain phonetically similar word. Hence,
given a nonword (e.g., /"tAAlf@n/ in Fig. 3) created by slightly mod-
ifying the pronunciation of a certain existing word (e.g., “Dolphin”
(/"dAAlf@n/)), the goal is to find its original word from the contents
of the generated images for the nonword. The core idea is that it
is not always best to retrieve the similarly spelled original word.
As described in Section 3.1, even if a nonword /"faUs/ originated
from an existing word “Mouse” (/"maUs/), it should not generate
images of a mouse for the nonword since there exists a more phonet-
ically similar word “House” (/"haUs/). Thus, in this case, generating
images of a house is regarded as more correct.

4.1 Task
The task of this evaluation is illustrated in Fig. 3. First, nonwords are
prepared by slightly modifying the class names of the CIFAR-100
dataset. This dataset provides 100 classes of visually distinguish-
able common objects ranging from animals to furniture along with
twenty superclasses consisting of five classes each. Hence, each
nonword has both a ground-truth class and a superclass derived
from the original word. For instance, the nonword /"tAAlf@n/ is
assigned with the ground-truth class “Dolphin” and also its super-
class “Aquatic Mammals”. Note that the two superclasses identically
named “Vehicles” are merged into one in this evaluation, resulting
in nineteen unbalanced superclasses in total.

Next, the proposed method generates ten images for each non-
word. On these generated images, we then perform 100-class image
classification based on CIFAR-100 classes to estimate the object that
most frequently appears in them. For example, if the majority of the
generated images for /"tAAlf@n/ are predicted to contain dolphins
and are classified as “Dolphin”, the majority class for /"tAAlf@n/
is regarded as the class “Dolphin”. At the same time, we also cal-
culate the majority superclass for /"tAAlf@n/ as the most frequent
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superclass among the ten predicted superclasses in order to as-
sess whether the generated images for the nonword depict at least
dolphin-like concepts, even if they are not exactly dolphins.

Finally, the majority class/superclass and that of the original
word are compared to calculate accuracy. Observing the transition
of accuracy according to the phonetic similarity between a nonword
and its original word measures how well the proposed method
associates a nonword with its phonetically similar word.

4.2 Nonword Creation
Nonwords are created in two schemes: Consonant substitution and
vowel substitution. In the former scheme, nonwords are created
by replacing the initial consonant of each of the CIFAR-100 classes
with other English consonants. For example, from the class name
“Dolphin” (/"dAAlf@n/), we obtain nonwords such as /"tAAlf@n/
(“Tolphin”) and /"gAAlf@n/ (“Golphin”). In this scheme, we only use
classes that start from a single consonant, yielding 936 nonwords
stemming from 68 existing words. In the latter scheme, nonwords
are created by replacing the vowel of the first syllable in each of the
CIFAR-100 classes with other English monophthongs or diphthongs.
For example, from the class name “Dolphin” (/"dAAlf@n/), we ob-
tain nonwords such as /"doUlf@n/ (“Dhole”+“-phin”) and /"dOIlf@n/
(“Doyle”+“-phin”). Considering English phonological restrictions,
we replace checked vowels only with checked vowels while we
replace free vowels only with free vowels. In this scheme, we use
classes that start from one or more consonants, yielding 369 non-
words stemming from 77 existing words.

Next, we define the phonetic similarity between each original
word-nonword pair based on the articulatory phoneme features as
described in Section 3.1. For those in the consonant substitution
scheme, only the initial consonants are different. Hence, following
the previous work [14], the phonetic similarity is defined using the
number of common features out of the three consonant articula-
tory features in the two contrasting consonants. The similarity is
regarded as “High” if the number is two, “Middle” if it is one, and
“Low” if no feature is in common. For those in the vowel substitution
scheme, we first construct a 3-dimensional vowel space using the
three vowel articulatory features, as shown in Fig. 4. We then define
the phonetic similarity by computing the L1 distance 𝑑 between
the two vowels on the space. Here, if the vowel is a diphthong,
the geometric centroid is used as the point of the diphthong. For
instance, when comparing /AA/ and /oU/, 𝑑 will be the L1 distance
between the points (1, 1, 1) and (1, 16 , 1). The similarity is regarded
as “High” if 𝑑 ≤ 1, “Middle” if 1 < 𝑑 ≤ 2, and “Low” if 2 < 𝑑 .

To compare the proposed method with the text-based original
Stable Diffusion [31], we also prepare corresponding spellings for
each nonword. In this paper, the phoneme-spelling correspondence
is decided based on the co-occurrences of phonemes and spellings
in existing English words (See Appendix A.1 for details). According
to this, some nonwords will be spelled exactly the same as the orig-
inal word (e.g., “Dolphin” for the nonword /"doUlf@n/), which may
yield situations advantageous to the comparative method in iden-
tifying the original word. Finally, the Carnegie Mellon University
(CMU) dictionary1 is used to check if the pronunciations of created
nonwords do not exist in English. Note that this may not cover

1https://github.com/menelik3/cmudict-ipa/ (Accessed July 11, 2023)
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Figure 4: Vowel space used tomeasure the phonetic similarity
among vowels.

Table 1: Statistics of nonwords in each experimental setting.

Consonant Substitution Low Middle High

Number of nonword 324 424 188
Example nonword for /"dAAlf@n/ /"hAAlf@n/ /"kAAlf@n/ /"tAAlf@n/
– Spelling (Nonword for “Dolphin”) “Holphin” “Colphin” “Tolphin”

Vowel Substitution Low Middle High

Number of nonwords 81 191 97
Example nonword for /"tuulIps/ /"taIlIps/ /"tOIlIps/ /"toUlIps/
– Spelling (Nonword for “Tulips”) “Tilips” “Toilips” “Tolips”

all inflected forms of words and rare words, and thus the created
nonwords might contain the pronunciations of such words. Table 1
shows the statistics of the created nonwords in each scheme.

4.3 Experimental Settings
4.3.1 Proposed and Comparative Methods. The proposed method
requires IPA-CLIP [14] distilled from the CLIP ViT-L/14 model [20].
To adjust the model to our purpose including the image genera-
tion and the multilingual comparison, we prepare pronunciation-
text pairs by ourselves and retrain its pronunciation encoder from
scratch. Specifically, first, we change the pronunciation dictionary
from the original paper [14], which is used to convert words into
phonetic transcription, to the CMU dictionary1. Also, the phonemes
/Ù/ and /Ã/ are split into combination of two separate ones, /tS/
and /dZ/, respectively. For text data, we use 1,114,375 English sen-
tences taken from some image captioning datasets [1], as well as
26,143 sentences consisting of only one word from Spell Checker
Oriented Word Lists (SCOWL)2. In addition, to emphasize the ex-
istence of an indefinite article before words, we also include sen-
tences in the shape of “a photo of <WORD>” and “a photo of a
<WORD>”. Sentences that have less frequent words are removed us-
ing a Python package wordfreq [30]. IPA-CLIP is trained up to 100
epochs with these 1,192,804 text-pronunciation pairs while apply-
ing the same settings for the other hyperparameters as the original
paper. For Stable Diffusion, we use Stable Diffusion-v1-4 with
the classifier-free guidance scale of 7.5. Ten images are generated
for each nonword using the same noise vectors.

Two-layer perceptron with the ReLU activation is adopted as the
multi-layer perceptron of the proposed method. It is trained up to
1,000 epochs using CLIP text embedding vectors and corresponding

2http://wordlist.aspell.net/ (Accessed July 11, 2023)

https://github.com/menelik3/cmudict-ipa/
http://wordlist.aspell.net/
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last-hidden-state outputs of sentences included in the training data
of IPA-CLIP. Mean Squared Error is used as an objective function.

As a comparison method, we first adopt the raw Stable Diffu-
sion. It generates images from the spelling of a nonword. We do
not further retrain its weights. We also compare another simple
strategy for nonword inputs which we call a Spell-Checker strat-
egy. This strategy replaces the nonword in a text prompt with the
most frequent existing word among words having the smallest edit
distance to the nonword before inputting it to Stable Diffusion.
For example, given a nonword “Bouse”, it first finds a set of words
that have the smallest edit distance to the nonword, e.g., {“Mouse”,
“House”, “Blouse”}. It then selects the most frequent word among
them, “House”, regardless of the phonetic similarity, and inputs the
prompt “a photo of a house” to Stable Diffusion to obtain im-
ages for the nonword “Bouse”. wordfreq is used for the frequency
calculation, and SCOWL is used as a source of existing words.

4.3.2 Prompt Engineering in Image Generation. Prompt engineer-
ing is a modification added to the language input of a pretrained
model to specify the context and intention of the input. Follow-
ing the prompt engineering for CLIP, the prompt for the proposed
method is set as /@ "foUtoU "2v @ <NONWORD>/ (also “a photo of
a <NONWORD>” for the comparative text-based Stable Diffusion) to
restrict the domain of generated images. For instance, in the exam-
ple shown in Fig. 3, ten images are generated from the prompt /@
"foUtoU "2v @ "tAAlf@n/ instead of just /"tAAlf@n/. If a one-word
prompt /"tAAlf@n/ is used, the ten generated images would become
too diverse and make it hard to obtain the majority class since the
word /"tAAlf@n/ itself has no explicit meaning.

4.3.3 CIFAR-100 Image Classifier. CLIP is employed as an image
classifier of CIFAR-100 classes, as used in the original paper [20].
CLIP image classifier functions based on the similarity calculation
between a given image and each of the class names. Given an
image, CLIP first computes its image embedding and also the text
embeddings for all of the class names. Then, the cosine similarity
between the image embedding and each of the text embeddings is
calculated. Softmaxed similarity scores work as a class probability
distribution. Hence, CLIP chooses the class that gives the maximum
similarity to the image embedding as the predicted class. As prompt
engineering, we use “a photo of a <CLASS>” if the class is a
singular noun, while “a photo of <CLASS>” if it is plural.

4.4 Results and Discussions
The results in the consonant and vowel substitution schemes are
shown in Fig. 5. In both schemes, the Spell-Checker approach made
the performance of the comparative method much higher, resulting
in an always high accuracy regardless of the phonetic similarity
between original words and nonwords. In contrast, the proposed
method shows a clear tendency that accuracy correlates with the
phonetic similarity between original words and nonwords, and
outperforms the others when the phonetic similarity is high. This
means that themore phonetically similar a nonword is to its original
word, themore likely generated images are to contain the concept of
its original words, indicating that the proposed method captures the
phonetic relationships among phonemes more correctly than the
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(a) Accuracy for 936 nonwords
in the consonant substitution
scheme.
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(b) Accuracy for 369 nonwords in
the vowel substitution scheme.

Figure 5: Results of the original-word-retrieval task. In each
figure, the solid lines represent the accuracy for classes, while
the dashed lines represent the accuracy for superclasses of
CIFAR-100 [11].

comparative methods. Interestingly, the raw comparative method
also showed this tendency, although it was less clear.

Regarding the proposed method, we also confirmed that the
accuracy for superclasses was always higher than that for classes by
more than 20

19×19 ≈ 0.06 which is the chance rate for the superclass
prediction in this evaluation. This implies, even if the generated
images from a nonword (e.g., /"kAAlf@n/) do not contain the very
concept of its original word (“Dolphin”), they tend to at least depict
similar concepts of the original word (e.g., "Whale"), which could
simulate the activation of a human brain towards semantically
similar words [15]. This tendency was not observed when using
the Spell-Checker approach because it actually generates images
from text prompts that do not contain nonwords.

In the consonant substitution, although the proposed method
overall outperformed the raw comparative method, a great improve-
ment was not confirmed. Language models such as Word2vec [16,
17] are known to learn phonetic relationships among phonemes
from the phonological restrictions on phoneme cooccurrences in
English [10]. We assume that the CLIP text encoder could also
have learned such relationships, resulting in the relatively high
performance of the raw Stable Diffusion in this scheme. In the
vowel substitution, on the other hand, the proposed method always
performed significantly better than the comparative method. One
reason is the lack of means to precisely describe vowels in the
English language. As different vowels may sometimes be spelled
with the same letters unlike consonants, the CLIP text encoder as
well as Stable Diffusion could not learn the vowel phonetic features
implicitly from the huge number of texts.

To further discuss the behavior of the proposed method towards
consonants, we conducted an additional evaluation that measures
its performance for unseen foreign consonants. As some foreign
consonants share certain articulatory features with English ones,
the proposed method can generate images even from inputs con-
taining such consonants. For instance, the German phoneme /ç/
(as in “Ich”) has the same manner of articulation as /f/ (Fricative),
hence the proposed method may be able to associate the nonword
/"çaIt/ with, e.g., “Fight” (/"faIt/). The setting of this evaluation
is the same as that of the consonant substitution, except for the
nonwords used. We prepare nonwords by substituting the initial
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Table 2: Statistics of nonwords in the additional evaluation.

Foreign Consonant Substitution Low Middle High

Number of nonwords 500 670 204
Example nonword for /"dAAlf@n/ /"çAAlf@n/ /"ñAAlf@n/ /"ÍAAlf@n/
– Description of the initial phone German ‘ch’ Spanish ‘ñ’ Czech ‘ď’
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Figure 6: Accuracy of the original-word-retrieval task
for 1,374 nonwords in the foreign-consonant substitution
scheme using the proposed method. For comparison, we
also plot its accuracy in the English consonant substitution
scheme shown in Fig. 5(a).

consonant of each class with either of twenty foreign consonants.
This scheme resulted in 1,374 nonwords stemming from 71 existing
words. The statistics are shown in Table 2.

The result of this additional evaluation is shown in Fig. 6. When
compared with Fig. 5(a), accuracy has increased particularly for non-
words whose phonetic similarity to their original words is “High”.
As a result, the proposed method scored an accuracy of 0.760 for su-
perclasses when nonwords have a high phonetic similarity to their
original words, meaning that it can associate 76.0% of nonwords
with the concepts of their phonetically very similar words if such
words exist. One of the reasons for this increase is that nonwords
starting from a non-English consonant have fewer phonetically
very similar words than nonwords starting from an English conso-
nant, making them more likely to be associated with their original
words. For example, the nonword /"tAAlf@n/ may be phonetically
similar to both “Dolphin” and “Tall”, while the nonword /"ÍAAlf@n/
may not be considered phonetically similar to “Tall”.

In summary, we have confirmed that the proposed method as-
sociates nonwords with the concepts of their phonetically similar
words based on phonetic similarity, even for nonwords containing
unseen phonemes. This is the result of introducing the pronuncia-
tion modality and thus cannot be achieved using conventional text-
based approaches, especially the Spell-Checker approach which
totally ignores the phoneme relationships.

4.5 Limitations
Although the proposed method outperformed Stable Diffusion re-
garding nonwords, the drop in its general performance towards
existing words was also confirmed. We observed an increase of
Fréchet Inception Distance (FID) [7] by 6.4 points and a decrease
of CLIP score [20] by 0.023 points on Microsoft Common Objects
in Context (MS-COCO) validation dataset [13]. We believe this is
caused by both the small model size of IPA-CLIP compared to CLIP
and the simple embedding insertion strategy to Stable Diffusion.
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(a) Result of the first trial.
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(b) Result of the second trial.

Figure 7: Number of questions in which the images generated
by each method were preferred in the two trials of the quali-
tative evaluation. The first trial asked participants “which
method generates images of similar-sounding words of a
given nonword”, while the second trial asked “which method
generates images that intuitively match the nonword”.

For this, combining both text and pronunciation modalities would
also enhance image generation performance.

5 QUALITATIVE EVALUATION
To further evaluate the proposed nonword-to-image generation
for other types of nonwords, we conduct a user study on Ama-
zon Mechanical Turk3. In each question of the survey, given an
audio file pronouncing a nonword and two groups of ten gener-
ated images, one for the proposed method and the other for the
comparative method (Stable Diffusion [31]), five participants are
asked to answer which group of images matches the sound of the
nonword. We conduct two trials with different instructions. In the
first trial, 73 participants are instructed to choose “the group that
more closely depicts the concept of words similar-sounding to the
nonword”. In the second trial, 108 participants are instructed to
choose “intuitively the group that more closely depicts the sound of
the nonword”. In both trials, we use the same set of 270 randomly
created English nonwords taken from a dataset of nonwords an-
notated with evoked emotion labels [24]. Hence, in contrast to the
quantitative evaluation, these nonwords do not necessarily have
specific phonetically similar words. See Appendix A.2 for more
detailed experimental settings.

The results of the two trials are shown in Fig. 7. In both trials,
the proposed method was preferred in more questions than the
comparative method. These results indicate that, even for randomly
created nonwords, the images generated by the proposed method
depict the concepts of their phonetically similar words more accu-
rately, and they also match human expectations more than those
generated by the comparative method. The latter result reinforces
our hypothesis that generating the concept of a phonetically sim-
ilar word for a nonword matches human expectations more than
generating the concepts of other words. Nevertheless, in the second
trial, the gain of the proposed method was not as large as in the
first trial. One of the reasons is that the association of phonetically
similar words is not the sole factor that shapes human perception.
To generate more intuitive images for nonwords, collecting more
human annotations and applying other psycholinguistic findings
could be effective.

3https://www.mturk.com/ (Accessed July 11, 2023)

https://www.mturk.com/
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/ə ˈfoʊˌtoʊ ˈʌv ə ˈhʊt/ (Hut) /ˈaɪn ˈfooto ˈfɔn ˈaɪnəm ˈhʊt/

/ə ˈfoʊˌtoʊ ˈʌv ə ˈmuul/ (Mool) /ˈaɪn ˈfooto ˈfɔn ˈaɪnəm ˈmuul/

English (A photo of a <WORD>) German (ein Foto von einem <WORD>)

(a) Examples of nonwords from which images containing similar
concepts are generated between English and German.

/ə ˈfoʊˌtoʊ ˈʌv ə ˈpʊp/ (Pup) /ˈaɪn ˈfooto ˈfɔn ˈaɪnəm ˈpʊp/

/ə ˈfoʊˌtoʊ ˈʌv ə ˈhaʊn/ (Houn) /ˈaɪn ˈfooto ˈfɔn ˈaɪnəm ˈhaʊn/

English (A photo of a <WORD>) German (Ein Foto von einem <WORD>)

(b) Examples of nonwords fromwhich images containing different
concepts are generated between English and German.

Figure 8: Cross-lingual comparison of the proposed nonword-to-image generation models for English and German.

6 CROSS-LINGUAL COMPARISION
In the previous sections, the proposed method was constructed
solely for English. This section explores its applicability to other
languages and its usefulness in comparing visual concepts evoked
by nonwords among different languages. As such, we train the pro-
posed method for German, which is selected because it has a similar
phoneme/phone set to the English one, and seek which pronunci-
ations evoke similar/different imagery in the two languages. For
instance, the German word “Gift” (Poison) has an opposite meaning
but has the same pronunciation as the English word “Gift”, and thus
the nonwords phonetically similar to the pronunciation of “Gift”
may evoke different visual concepts between the speakers of these
languages. If the proposed method can visualize such differences,
it would be useful in brand naming and language learning.

We first prepare German sentence-pronunciation pairs and train
IPA-CLIP [14] on the German data, which is used to condition
Stable Diffusion [31] with German pronunciation inputs in the
proposed method (See Appendix A.3 for details). Next, as seeds
of the nonword-to-image generation, 511 monosyllabic nonwords
in the form of Consonant-Vowel-Consonant are prepared. These
nonwords do not exist in both English and German and consist of
only phonemes appearing in both languages. We generate images
using a prompt /@ "foUtoU "2v @ <NONWORD>/ (“A photo of a
<NONWORD>”) for English and /"aIn "footo "fOn "aIn@m <NONWORD>/
(“Ein Foto von einem <NONWORD>”) for German.

Figure 8 shows examples of nonwords from which images con-
taining similar or dissimilar concepts were generated between Eng-
lish and German. For the nonword /"hUt/, for example, concepts
related to a hut appeared in both languages. This is because the
pronunciation of the nonword is phonetically similar to both Eng-
lish “Hut” (/"h2t/) and German “Hütte” (/"hYt@/, a German word
for hut). In contrast, between the two languages, different gen-
ders of people appeared in the generated images for the nonword
/"pUp/. In this case, the English “Pope” (/"poUp/) and the German
“Puppe” (/"pUp@/, a word for doll) has appeared in those generated
images, as they are located quite close to the nonword /"pUp/ in
the embedding space of IPA-CLIP in each language.

From the results above, we confirmed that the characteristic
of associating nonwords with their phonetically similar words is
preserved in the model built for the German language, too. This

assures the applicability of the proposed method to at least lan-
guages having a phonological rule similar to English. Modeling
such language-specific nonword-to-imagery mappings should be
useful in applications like brand naming and language learning.

7 CONCLUSIONS
Conventional Text-to-Image (T2I) generation models are reported
to generate unexpected images when nonwords are input [3, 9, 18].
To make their behavior more robust against nonwords, this pa-
per proposed a method to generate images considering phonetic
similarity. This enables the model to connect nonwords with their
phonetically similar existing words. The quantitative evaluation
showed its ability to generate images that contain concepts of pho-
netically similar words for nonwords better than a conventional
T2I generation method. This was even valid when nonwords con-
tained unseen and foreign phonemes. The qualitative evaluation
further confirmed a better agreement of the proposed nonword-to-
image generation with human expectations using a wide variety of
nonwords. Lastly, the comparison of the proposed models built for
different languages suggested its usefulness in brand naming and
language learning.

Future work includes further analysis of the nonword-image
matching in the proposed method. Also, we recognize that the
proposed framework does not distinguish homonyms and generates
the same images for such words. For this, combining phonetic and
morphological similarities would enable applying the proposed
method also to languages rich in homonyms such as Japanese.
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A APPENDIX
A.1 Phoneme-Spelling Correspondence
For each of the nonwords created in Section 4.2 (e.g., /"tAAlf@n/),
the paper also prepared a corresponding spelling (e.g., “Tolphin”).
Table 3 and Table 4 show the phoneme-spelling correspondences
for consonants and vowels, respectively. These correspondences
were defined based on the spellings and pronunciations of existing
English words. For instance, ‘u’ was selected as the spelling for the
phoneme /2/ because, in most of the words having the phoneme
/2/, its corresponding spelling is written using ‘u’, such as “Cut”
(/"k2t/), “Sum” (/"s2m/), and “Utter” (/"2t@ô/).

A.2 Qualitative Evaluation
This section elaborates on the experimental settings of the qualita-
tive evaluation described in Section 5.

A.2.1 Crowdsourcing. We recruited 73 English speakers living in
the United States on Amazon Mechanical Turk (AMT)3. Given an
audio file pronouncing a nonword and two groups of ten generated
images; one for the proposed method and the other for the com-
parative method (original Stable Diffusion [31]), participants were
asked to answer which group of images matches the sound of the
nonword. Specifically, they were instructed to repeat the nonword
to familiarize themselves with the pronunciation and then choose
“the group that more closely depicts the concept of words that sound
similar to the nonsense word”. For each task (called “HIT ” in AMT),
eleven sets of questions were sequentially shown to participants,
including ten actual questions and one attention check question
which should be answered correctly. For each question, participants
were also asked to write what kinds of similar-sounding words they
recalled. These data were used only for rejecting inappropriate
answers. The example of the user interface is shown in Fig. 9. The
order of the two image groups was shuffled in each question to elim-
inate the bias of choosing the left (or right) group more frequently
than the other. Participants were paid $1.00 per HIT.

A.2.2 Data Shown to Participants. The nonwords used in this sur-
vey were taken from a dataset that provides 270 randomly-created
English nonwords (both spelling and pronunciation) annotatedwith
evoked emotion labels [24]. This dataset was selected to measure
the performance of the proposed nonword-to-image generation
on totally random nonwords that do not necessarily have specific
phonetically similar words. We did not use the nonwords created in
Section 4 because their pronunciations were supposed to be quite
close to certain existing words, which in most cases could give
little difference in the generated images between the proposed and
comparative methods.

The audio data for each of the pronunciation of nonwords were
prepared using Speech Application Programming Interface (SAPI) 4
on Microsoft Windows 10. It was used to convert the pronuncia-
tions of nonwords written with International Phonetic Alphabet
(IPA) symbols (e.g., /"blaU@ô/) into spoken sounds (e.g., audio of an
English speaker pronouncing the pronunciation /"blaU@ô/). Zira
(American English, Female) was selected as the speaker with a fixed
speaking rate of 0.
4https://docs.microsoft.com/en-us/previous-versions/windows/desktop/ee125663(v=
vs.85) (Accessed July 11, 2023)

Table 3: Consonant-spelling correspondences used for the
quantitative evaluation.

Consonant /z/ /s/ /v/ /f/ /b/ /p/ /d/ /t/ /g/ /k/
Spelling ‘z’ ‘s’ ‘v’ ‘f’ ‘b’ ‘p’ ‘d’ ‘t’ ‘g’ ‘k’ or ‘c’

Consonant /D/ /T/ /S/ /h//m//n/ /ô/ /j/ /l/ /w/
Spelling ‘th’ ‘th’ ‘sh’ ‘h’ ‘m’ ‘n’ ‘r’ ‘y’ ‘l’ ‘w’

Table 4: Vowel-spelling correspondences used for the quanti-
tative evaluation.

Free Vowel /eI/ /ii/ /aI//oU//uu//aU//OI//AA/ /O/
Spelling ‘a’ ‘ea’ ‘i’ ‘o’ ‘u’ ‘ou’ ‘oi’ ‘au’ ‘o’

Checked Vowel /2/ /æ/ /E/ /I/ /U/
Spelling ‘u’ ‘a’ ‘e’ ‘i’ ‘u’

Figure 9: Screenshot of the user interface presented to par-
ticipants in the qualitative experiment.

A.3 Training German Model
This section describes the detail of the training data used to extend
the proposed method to the German language in Section 6.

The training data were constructed from 40,146 pairs of English-
German sentences that previous work [1] had created from English
using Amazon Translate5. The conversion of German words into
International Phonetic Alphabet (IPA) transcription was performed
using the Wiktionary-based German pronunciation dictionary6.
Using the entry words of this dictionary as a German wordlist,
we also added sentences in the shape of /<WORD>/, /"aIn "footo
"fOn <WORD>/ (“Ein Foto von <WORD>”), and /"aIn "footo "fOn
"aIn@m <WORD>/ (“Ein Foto von einem <WORD>”), to the training
data. We translated those added German sentences into English
using Amazon Translate to calculate the CLIP embeddings for them.
Regarding the German word-to-pronunciation conversion, because
the pronunciation dictionary lacked entries for many of the German

5https://aws.amazon.com/translate/ (Accessed July 11, 2023)
6https://github.com/Kyubyong/pron_dictionaries/ (Accessed July 11, 2023)

https://docs.microsoft.com/en-us/previous-versions/windows/desktop/ee125663(v=vs.85)
https://docs.microsoft.com/en-us/previous-versions/windows/desktop/ee125663(v=vs.85)
https://aws.amazon.com/translate/
https://github.com/Kyubyong/pron_dictionaries/
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(a) “a photo of a blour” (b) /@ "foUtoU "2v @ "blaU@ô/

(c) “a photo of a flike” (d) /@ "foUtoU "2v @ "flaIk/

Figure 10: Examples of groups of ten images generated for prompts containing randomly created nonwords [24] used in
our qualitative evaluation. The left image groups were generated from texts using an existing T2I generation method Stable
Diffusion [31], while the right groups were generated from pronunciations using the proposed P2I generation method.

words in inflected forms like “Lustige”, which comprises the stem
“Lustig” and the affix “-e”, we also trained a Transformer-based
grapheme-to-phoneme converter named DeepPhonemizer7. We
used this converter only when the dictionary had no entry for the
word. These operations resulted in the training data of 133,914
pronunciations of German sentences with English translations.

The settings and parameters for training IPA-CLIP were identical
to Section 4.3.1 except for the training epochs. We trained the
German model up to 600 epochs due to the small size of training
data compared to the English one (1,192,804 sentences).

A.4 Preprocessing of Pronunciation Data
Throughout the paper, to precisely calculate phonetic similarity
and compare pronunciations among different languages, some mod-
ifications were made to the raw pronunciation data that existing
dictionaries of each language provide. Specifically, the following
six modifications were made to each of the pronunciations:

(1) Primary stress /"/ is inserted at the beginning of pronuncia-
tions of monosyllabic words.

(2) Symbol /:/, which represents the lengthened vowel, is re-
placed with the previously occurred vowel (/"kju:/ (“Cue”)
changed to /"kjuu/).

(3) Affricates are split into two separate phonemes. Specifically,
the four affricates that appear either in English or German,
/Ù/ (as in English “Choke” (/"ÙoUk/)), /Ã/ (English “Joke”
(/"ÃoUk/)), /ţ/ (German “Zeit” (/"ţaIt/)), and /

>
pf/ (Ger-

man “Pfeil” (/"
>
pfaIl/)), are split into a combination of two

phonemes /tS/, /dZ/, /ts/, and /pf/, respectively.

7https://github.com/as-ideas/DeepPhonemizer/ (Accessed July 11, 2023)

(4) English rhotic vowels, /Ä/ (as in “Mirror”: /"mIôÄ/) and
/Ç/ (as in “Pearl”: /"pÇl/), are both converted to /@ô/ (e.g.,
/"mIô@ô/).

(5) Allophones are converted to their corresponding phonemes
or phones. English /R/ (as in English “Water” (/"wORÄ/)) is
replaced with /t/. German /ö/ (German “Ruf ” (/"öuuf/))
and /X/ (German “Doch” (/"dOX/)) are replaced with /K/
and /x/, respectively.

(6) German syllabic consonant /n
"
/ (as in “Tragen” (/tKaagn

"
/))

is converted to /@n/.

A.5 Examples of Nonword-to-Image Generation
This section provides some examples of nonword-to-image genera-
tion using either the comparative Text-to-Image (T2I) generation
method [31] or the proposed Pronunciation-to-Image (P2I) genera-
tion method. Figure 10 displays examples of generated images for
nonwords used in the qualitative evaluation in Section 5 which
were taken from an existing dataset [24].
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