
Small Object Detection for Birds with Swin Transformer

Da Huo1, Marc A. Kastner2, Tingwei Liu1, Yasutomo Kawanishi3,1, Takatsugu Hirayama4,1,
Takahiro Komamizu1, Ichiro Ide1

1Nagoya University
Chikusa-ku, Nagoya, 464-8601, Japan

{huod,liut}@cs.is.i.nagoya-u.ac.jp,
taka-coma@acm.org, ide@i.nagoya-u.ac.jp

2Kyoto University
Sakyo-ku, Kyoto, 606-8501, Japan

mkastner@i.kyoto-u.ac.jp

3GRP, RIKEN
Seika-cho, Kyoto 619-0288, Japan
yasutomo.kawanishi@riken.jp

4University of Human Environments
Okazaki, Aichi, 444-3505, Japan

t-hirayama@uhe.ac.jp

Abstract

Object detection is the task of detecting objects in
an image. In this task, the detection of small objects
is particularly difficult. Other than the small size, it is
also accompanied by difficulties due to blur, occlusion,
and so on. Current small object detection methods are
tailored to small and dense situations, such as pedes-
trians in a crowd or far objects in remote sensing sce-
narios. However, when the target object is small and
sparse, there is a lack of objects available for train-
ing, making it more difficult to learn effective features.
In this paper, we propose a specialized method for de-
tecting a specific category of small objects; birds. Par-
ticularly, we improve the features learned by the neck;
the sub-network between the backbone and the predic-
tion head, to learn more effective features with a hier-
archical design. We employ Swin Transformer to up-
sample the image features. Moreover, we change the
shifted window size for adapting to small objects. Ex-
periments show that the proposed Swin Transformer-
based neck combined with CenterNet can lead to good
performance by changing the window sizes. We further
find that smaller window sizes (default 2) benefit mAPs
for small object detection.

1 Introduction

With the development of deep learning, object de-
tection has achieved good performance in various chal-
lenging benchmarks. It is successfully applied in many
applications, such as autonomous driving, surveillance,
and remote sensing. However, detecting small objects,
particularly those smaller than 32 pixels, is still a chal-
lenging task compared to objects in general sizes [1, 2].
For example, even recent object detection methods
that show good performance on general objects are
subject to a drop of nearly half on small objects in
MS COCO [2, 3] detection.

Such a large performance gap is mainly caused by

 

(a) layer l (b) layer l + 1

Figure 1. Illustration of the proposed shifted win-
dow self-attention approach in the Swin Trans-
former blocks in the neck network. In layer l,
a default window partitioning scheme is adopted
(window size 2), and self-attention is computed
inside each window. In the next layer l + 1, the
window partitioning is shifted by half of the win-
dow size (here, 1) for producing new windows.
The birds in the windows of layer l + 1 cross
the boundaries of the previous windows of layer
l, provided cross window attention shifting with
smaller window size for small object detection.

the following factors: 1) Features of small objects dis-
appear after many stages of down and up samplings,
hence it is hard to learn the detection model, 2) The
common receptive field on low-resolution feature maps
may not match the size of small objects.

In recent years, various methods have been pro-
posed to solve limitations in the detection of particu-
larly small objects. Super Resolution is used to recover
the information of low-resolution objects, such as SOD-
MTGAN [4]. They use a pre-trained detector to obtain
object regions and then use a generator to generate cor-
responding super-resolution objects of an image. The
discriminator is responsible for distinguishing whether
the object is real or fake, as well as a detector to predict
the category and location of the object. These meth-



    

           

     

 
 
  

 
  
  
 

  

       

  

       

  

       

  

       

      

        

  

 

  
 
 

  
   

 

  
 
 

  
   

 

 
 
 

 
   

 

 
 
 

 
  

 

 
 
 

 
  

      

      
    

           

     

 
 
  

 
  
  
 

    

           

     

 
 
  

 
  
  
 

    

           

     

 
 
 
 
  
 
 
  

Figure 2. Architecture of the proposed neck network. Feature C5 from the final stage of the backbone is the
input. Three features with different scales, also from the backbone, namely C2, C3, and C4 are merged. The
output is used for the final detection.

ods have difficulties in stability when training and are
not efficient in detection tasks. Data-based methods
are also considered to address small object detection.
Here, the goal is to address the imbalance problems of
a dataset, such as a pixel region of small objects not
being large enough for training sufficient features. The
use of data augmentation [5] solves this problem by
simply adding duplicate small objects. However, these
methods only alleviate issues of specific datasets but do
not address the difficulties in learning efficient features
for small objects.

To sufficiently learn object features, we focus on the
architecture of the object detection model for fitting
the small object scale. In general, the common compo-
nents of a detection model are: a backbone for image
feature extraction, a neck with pyramid-like architec-
ture combining different sizes of image feature maps
for feature merging, and a prediction head for object
classes and bounding box final prediction.

In contrast to existing work using CNN-based net-
works, such as Feature Pyramid Networks (FPN) [6],
we use Swin Transformer [9] in both the backbone and
the neck, which solves the previous limitation of the in-
consistency of features, particularly while merging re-
spective ones. Further, to adapt to the small object
scale, we change the default window size in the neck
to pay more attention to small objects, as shown in
Figure 1.

2 Related Work

2.1 Object Detection Approaches

Anchor-based Approaches. A large number of
methods use pre-defined anchors for object detection,
such as YOLO v3 [7], which generates region proposals
within the detection network. It samples pre-defined

fixed-shape bounding boxes (called anchors) and clas-
sifies each into “foreground or not”. An anchor is la-
beled foreground with a > 0.7 overlap with any ground-
truth object as positive samples, background with a <
0.3 overlap as negative samples, or ignored otherwise.
Each generated region proposal is again prepared for
final prediction. However, in the case of small objects,
the small scales leading to most of the anchors are se-
lected as negative samples which causes an imbalance
between positive ones while training the model.
Anchor-free Approaches. Currently, anchor-free
methods are considered as one of the solutions for small
object detection. CenterNet [8] only predicts the cen-
ter points and the bounding boxes of the objects di-
rectly without IoU-based anchors for easily learning
small objects. Further, they use focal loss to deal with
the imbalance between positive and negative samples.
Anchor-free methods are end-to-end, simple, fast, and
also yield high performance in object detection. The
proposed method builds on existing anchor-free meth-
ods, making them more robust through an improved
neck network.

2.2 Swin Transformer

Recently, Swin Transformer [9] has been proposed
showing outstanding performance in most vision tasks,
and quickly attracted significant attention. It shows
great potential with hierarchical architecture for de-
tecting objects with multiple scales. Further, they
use shifting window-based attention that can make the
transformer model learn features with local informa-
tion by limiting the calculation of self-attention to a
local window, greatly reducing the computational com-
plexity. Swin Transformer can learn both local and
global features, achieving excellent results. In the pro-
posed method, we employ it as part of the backbone
network and the neck network.



2.3 Multi-scale Feature Learning

The general idea is to learn objects in different
scales by producing features with several sizes. The
most famous method is the Feature Pyramid Network
(FPN) [6]. In deep neural networks, deep layers are
generally rich in abstract semantic information, while
shallow layers have more geometric details. The main
idea is to integrate low-level spatial information and
high-level semantic information to enhance object rep-
resentation in multiple levels. Many methods [10, 11]
made improvements based on FPN for learning better
representation in different scales for small object de-
tection. The proposed method uses shifted windows
for learning object features in several levels similar to
FPN.

3 Method

3.1 Overall Architecture

The proposed method follows the common architec-
ture with three parts: backbone, neck, and prediction
head. In particular, we choose CenterNet [8] as a base-
line for small object detection. In the backbone net-
work, we use Swin Transformer [9] for producing mul-
tiple levels of features instead of ResNet-50 [12].

In the neck, we propose a hierarchical network based
on Swin Transformer rather than a CNN-based Center-
NetNeck [8] or FPN [6]. An overview of the proposed
network is presented in Figure 2, which illustrates a
hierarchical architecture in each stage based on Swin
Transformer. It first uses the final output of the Swin
Transformer backbone into the first stage of the neck
network. In our implementation, we adopt multiple
(two as default) Swin Transformer blocks in each stage
of the neck. In each stage, we also follow the Swin
Transformer which calculates the attention inside of
the window. This allows us to focus on more local in-
formation similar to convolution operation. Further,
with the shifting windows in each stage, attentions of
overlapping windows can be considered by the delicate
shifting window design. Finally, we use the Up Merging
module to upsample the feature maps in each stage to
make features with multiple scales for better detection.

3.2 Shifted Windows Used in Neck Network

The default window size of the Swin Transformer
model is 7, contributing to excellent performance in
general computer vision tasks, including object detec-
tion and semantic segmentation. It can detect objects
in general sizes with the default window size. However,
it may not be optimal to handle objects in small sizes.

Here, we consider small objects as those less than
32 pixels. In such cases, after 32× down-sampling,
it can only represent one point of the feature map at
most. If the window size were set to the default 7, the

 
 

 
 
                  
 
 
 
 
 
 
 
 
 
 
 

 

    

    

    

    

 

  

  

 

  

  

 

  

  

 

  

  

 

Figure 3. Illustration of the Up Merging mod-
ule of Swin Transformer neck for upsampling fea-
tures. We use it in three stages for upsampling
2× feature size.

attention will be neglected inside such a big window.
Moreover, with the shifted window approach for ob-
taining attention between windows, small object will
not appear on different windows in the general object
size. Instead, it will always be inside the same window;
The cross-windows attention will not be considered in
this situation. Here, the window partitioning scheme
is shown in Figure 1, visualizing the default window
size of 2 × 2. By changing the window size to some-
thing smaller, the model considers the attention of the
surrounding of small objects, such as the sky in the
lower-left of the bird of the l -th layer, and the upper-
right of the cloud around the bird in the l+1-th layer.

3.3 Upmerging Blocks for Feature Upsampling

Between multiple stages of the neck network, it also
must satisfy different sizes of feature maps for multiple
scale detection. Considering the efficiency of the neck,
we propose an upsampling module using simple oper-
ations instead of transposed convolution. The upsam-
pling mechanism is the reverse of the Patch Merging
for down-sampling; We call it Up Merging module, as
shown in Figure 3, which is also adopted in an image
super-resolution method called PixelShuffle [13]. We
set the stride of 2 for this process. After this, the num-
ber of channels of the feature maps becomes C from
the input channel (denoted as 4C). To be consistent
with the backbone for feature merging, we use a linear
layer to change the channel from C to 2C.

3.4 Skip Connections for Feature Merging

With the long distance of both the backbone and
neck networks, a large amount of information is lost
through many down-sampling and up-sampling pro-
cesses. Different from the CenterNet [8], we take a U-
Net [14]-like architecture and exploit skip-connections
for feature merging to deal with long path losses and
provide efficient location and object details from the
backbone network. Here, we use concatenation with
the features of the backbone and neck networks.



4 Experiments

4.1 Small Object Dataset

We conduct experiments on two datasets for bird
object detection, Drone2021 [15], which consists of
47,260 images with 60,971 annotated bird instances,
and MVA2023 [16], which consists of 9,759 images
with 29,037 annotated bird instances. Our experi-
ments follow the baseline with CenterNet proposed by
MVA2023 [17].

In the following, we first change the backbone net-
work from ResNet50 [12] to the current popularly used
Swin Transformer (Swin-S) [9] pre-trained with Ima-
geNet22K [18]. We keep the CenterNet head with no
change with three sub-networks to predict the center
points, width, and height of the bounding box, and an
offset for each center point, respectively.

4.2 Settings and Results

We use training steps and settings as follows: first,
we train the model on Drone2021 for 150 epochs with
a learning rate of 5e−6. Next, we fine-tune it on
MVA2023 for 100 epochs with a learning rate of 1e−5.
Thirdly, we generate predictions on MVA2023 to select
hard-negatives examples. Next, we use hard negative
training on MVA2023 with a hard-negative rate of 0.3
to introduce images for training. Here we change the
setting in the head of CenterNet for better performance
to make the gamma 6.0 in loss function for center point
prediction and L1 loss weight 0.2 for the prediction of
the bounding box. Finally, we generate the predic-
tions for testing in the MVA challenge. As a result, we
obtained AP50 of 0.702 in the online public test that
contains 9,699 images on the MVA challenge server.

4.3 Ablation Study

Swin Transformer Neck: To explore the ability of
the proposed network for detecting small objects, we
compare the proposed Swin Transformer neck with
the previous CenterNet neck on the AP performance.
The results validated on MVA2023 validation set are
shown in Table 1. We can see that the proposed
Swin Transformer neck performs better for small-sized
objects than CenterNetNeck used as default in Cen-
terNet for general sized object detection.

Changing the Window Size: Moreover, we explore
the impact of the window size in the neck. Considering
the training time, we report the performance before
hard-negative training. The results shown in Table 2
indicate that the smaller the window size, the better
performance is obtained in all metrics. Further, for
small object under 32 pixels, the performance shows
clearly that a smaller window size, especially window
size 2, yields better APS , as shown in Figure 4.

Table 1. Mean Average Precision between Cen-
terNet neck and Swin Transformer neck in
MVA2023 [16] validation set.

Neck AP50 AP75 AP

CenterNet 0.846 0.337 0.702
Swin Transformer 0.898 0.372 0.745

Table 2. Mean Average Precision in differ-
ent window size of Swin Transformer neck in
MVA2023 [16] validation set, reported before the
hard negative training.

Window Size AP50 AP75 AP

2 0.702 0.171 0.549
3 0.693 0.166 0.538
5 0.684 0.158 0.53
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Figure 4. Mean Average Precision of small ob-
jects under 32 pixels (APS) with different win-
dows sizes 2, 3, and 5 of Swin Transformer neck,
from Drone2021 [15] validation set.

5 Conclusion

We proposed a specialized method for detecting
small objects. Our contributions are as follows: 1) We
proposed an hierarchical neck network based on Swin
Transformer rather than CNN. 2) To adapt to small
objects, we changed the default window size to a small
one in the neck network to pay more attention to small
objects. 3) Experimental results showed the effectice-
ness of the above two contributions in AP.
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