On Identifying Pareidolia Phenomenon by Emulating Patient Behavior

Zhaohui Zhu1,2 Marc A. Kastner2 Shin’ichi Satoh2,1

1 The University of Tokyo, Tokyo, Japan
2 National Institute of Informatics, Tokyo, Japan
Introduction

Pareidolia Phenomenon

Dementia with Lewy bodies (DLB)

Pareidolia

Alzheimer’s Disease (AD)

Similar visual illusion

- Some patterns that may be seen as faces by DLB patients
Introduction

Noise Pareidolia Test

Doctor

Patient

Psychiatric Illness or Not

Identification of Patient Type

Face Detection Model

Yes/No

Noise-like images

Computer-Assisted Diagnosis

- Improve the efficiency
- Get a better understanding of the disease and patient types

Limitations

- A large number of test images
- AD patients may also see faces in the test

Result:

Type = B
Proposed Method

Emulation of Patient Behavior

Patterns Seen as Faces

Data Augmentation & Train Models

Reference Models

A1
Model f_{A1}^r

A2
Model f_{A2}^r

B1
Model f_{B1}^r

B2
Model f_{B2}^r

Identification of Patient Type

Test images X_i

Distance Function $d(f^q(X_i), f_i^r(X_i))$

$\min d = d(f^q, f_{B1}^r) \\ f^q \approx f_{B1}^r \Rightarrow DLB$
Proposed Method

Emulation of Patient Behavior

Existing test images

[Patient A (AD)]

[Patient B (DBL)]

[Patient C (DLB)]

Patterns Seen as Faces

Data Augmentation

[Real face patterns]

Perlin noise → Random background

Pretrained face detection model (SSD)

WIDER Face dataset

Training Sets

[1] A1

[3] B1

[5] C1

[7] H1

[8] H2

Reference Models

Finetune

[1] A1

[3] B1

[5] C1

[7] H1

[8] H2

Test

Distance Function

\[d(f^q(X_i), f^r(X_i)) \]

\[f^q \approx f^r_{B1} \Rightarrow DBL \]

Identification of Patient Type

Test images \(X_i \)

[0.8]

[0.9]

[0.1]

[0.2]

\[\min d = d(f^q, f^r_{B1}) \]
Proposed Method

Emulation of Patient Behavior

Patterns Seen as Faces

Data Augmentation & Train Models

Reference Models

Patient A (AD)

A1

Model f_{A1}

Test

A2

Model f_{A2}

B1

Model f_{B1}

B2

Model f_{B2}

Patient B (DLB)

Patient C (DLB)

Identification of Patient Type

Test images X_i

Distance Function $d(f^q(X_i), f_i^r(X_i))$

0.8

0.9

0.1

0.2

$\min d = d(f^q, f_{B1}^r)$

$\iff f^q \approx f_{B1}^r = \text{DLB}$

Query Model

Model f^q
Proposed Method

Emulation of Patient Behavior

Patterns Seen as Faces

Data Augmentation & Train Models

Patient A (AD)

Patient B (DLB)

Patient C (DLB)

Reference Models

Test images X_i

Distance Function

$D(f^q(X_i), f^r_{A1}(X_i))$

$D(f^q(X_i), f^r_{A2}(X_i))$

$D(f^q(X_i), f^r_{B1}(X_i))$

$D(f^q(X_i), f^r_{B2}(X_i))$

$\min d = D(f^q, f^r_B)$

$f^q \approx f^r_B = DLB$

Identification of Patient Type

Query Model

Model f^q
Identification of Patient Type

Distance Function

Model f_1 → Test images X_t (N images) → Output vector (2 dimensions) → Contrastive loss \mathcal{L} → Update parameters to minimize the loss (in a metric learning way)

$\nabla_W \mathcal{L}(W)$

Model f_2 → Test images X_t (N images) → Output vector (2 dimensions) → Contrastive loss \mathcal{L} → Update parameters to minimize the loss (in a metric learning way)

$\nabla_W \mathcal{L}(W)$
Identification of Patient Type

Distance Function

Contrastive Loss
- Type-level loss $\mathcal{L}_t \rightarrow$ Separate models of different types (Pareidolia / Non-pareidolia)
- Patient-level loss $\mathcal{L}_p \rightarrow$ Separate models of different patients (Patient A/B/C/D/E)
Identification of Patient Type

Sampling method

- Add an regularization term: L_1 regularization

Minimize $(l + \lambda \|W\|_{2,1}) \rightarrow$ More zero columns in $W \rightarrow$ Need less test images
Data for Evaluation Experiments

- Patient A (AD)
- Patient B (DLB)
- Patient C (DLB)
- Patient D (DLB)
- Patient E (DLB)

300 images for each patient

Healthy (50 models)
- A (50 models)
- B (50 models)
- C (50 models)
- D (50 models)
- E (50 models)

Non-pareidolia

Models of one of the DLB patients (B/C/D/E)
- Query models

Pareidolia

Other models except query models
- Reference models
Comparison Experiments

Distance Functions

- Baseline 1 (d_N): Numbers of detected images
- Baseline 2 (d_H): Hamming distance
- Proposed (d_E): Embedding space

Loss Functions

- One-way loss \mathcal{L}_t
 Separate different types (Pareidolia/Non-pareidolia)
- Two-way loss $\mathcal{L}_t + \mathcal{L}_p$
 Separate different types and different patients

Sampling Methods

- Proposed sampling method
- Random sampling
Experimental Results

- Distribution on the embedding space

Trained with one-way loss

- Non-pareidolia: Healthy, A; Pareidolia: B, C, D, E

Trained with two-way loss
Performance of identifying type of the models

<table>
<thead>
<tr>
<th>Distance Function</th>
<th>Loss Function</th>
<th>Sampling Method</th>
<th>Average Number of Test Images</th>
<th>Average Value of mAP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline 1 (d_N)</td>
<td>-</td>
<td>None</td>
<td>420</td>
<td>0.66</td>
</tr>
<tr>
<td>Baseline 2 (d_H)</td>
<td>-</td>
<td>None</td>
<td>420</td>
<td>0.53</td>
</tr>
<tr>
<td>Proposed (d_E)</td>
<td>One-way loss</td>
<td>Proposed</td>
<td>68.5</td>
<td>0.90</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Random</td>
<td>68.5</td>
<td>0.65</td>
</tr>
<tr>
<td></td>
<td>Two-way loss</td>
<td>Proposed</td>
<td>78.5</td>
<td>0.87</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Random</td>
<td>78.5</td>
<td>0.74</td>
</tr>
</tbody>
</table>

- Proposed method outperforms baseline comparisons for both the distance functions and the sampling functions.
Conclusion

- Propose a method for the novel task to identify pareidolia phenomenon in patients through emulating patient behavior
 → A step towards a computer-assisted diagnosis for psychiatric conditions

- Show promising performance for discerning real pareidolia (in DLB) from similar visual illusions (such as AD)

- Provide a way to reduce the number of needed test images in clinical noise pareidolia tests
On Identifying Pareidolia Phenomenon by Emulating Patient Behavior

Zhaohui Zhu1,2, Marc A. Kastner2, Shin’ichi Satoh2,1

1 The University of Tokyo, Tokyo, Japan
2 National Institute of Informatics, Tokyo, Japan

Email: zhzhu@nii.ac.jp