On Identifying Pareidolia Phenomenon by Emulating Patient Behavior

Zhaohui Zhu^{1,2}

Marc A. Kastner²

Shin'ichi Satoh^{2,1}

¹ The University of Tokyo, Tokyo, Japan ² National Institute of Informatics, Tokyo, Japan

Introduction

Pareidolia Phenomenon

Not pareidolia

Pareidolia

Dementia with Lewy bodies (DLB) Pareidolia

Alzheimer's Disease (AD) Similar visual illusion

• • •

Some patterns that may be seen as faces by DLB patients

Introduction

Noise Pareidolia Test

Limitations

- A large number of test images
- AD patients may also see faces in the test

Computer-Assisted Diagnosis

- Improve the efficiency
- Get a better understanding of the disease and patient types

Identification of Patient Type

Distance Function

Update parameters to minimize the loss

(in a metric learning way)

 \rightarrow Make the same class closer and make different classes further

Identification of Patient Type

Distance Function

Contrastive Loss

- Type-level loss $\mathcal{L}_t \rightarrow$ Separate models of different types (Pareidolia / Non-pareidolia)
- Patient-level loss $\mathcal{L}_p \rightarrow$ Separate models of different patients (Patient A/B/C/D/E)

Identification of Patient Type

Sampling method

• Add an regularization term: L1 regularization

Minimize $(l + \lambda || \mathbf{W} ||_{2,1}) \rightarrow More zero columns in \mathbf{W} \rightarrow Need less test images$

Data for Evaluation Experiments

Comparison Experiments

Distance Functions

- • (f_1, f_2) \circ Baseline 1 (d_N): Numbers of detected images • • (d_1, f_2) \circ Baseline 2 (d_H): Hamming distance

 - Proposed (d_F): Embedding space

Loss Functions

- One-way loss \mathcal{L}_t
 - Separate different types and different patients

Sampling Methods

- Proposed sampling method
- Random sampling

Experimental Results

Distribution on the embedding space

Non-pareidolia: Healthy, A; Pareidolia: B, C, D, E

Experimental Results

Performance of identifying type of the models

Distance Function	Loss Function	Sampling Method	Average Number of Test Images	Avgerage Value of mAP
Baseline 1 (d_N)	-	None	420	0.66
Baseline 2 (d_H)	-	None	420	0.53
Proposed (<i>d_e</i>)	One-way loss	Proposed	68.5	0.90
		Random	68.5	0.65
	Two-way loss	Proposed	78.5	0.87
		Random	78.5	0.74

Proposed method outperforms baseline comparisons for both the distance functions and the sampling functions.

Conclusion

Propose a method for the novel task to identify pareidolia phenomenon in patients through emulating patient behavior

 \rightarrow A step towards a computer-assisted diagnosis for psychiatric conditions

- Show promising performance for discerning real pareidolia (in DLB) from similar visual illusions (such as AD)
- Provide a way to reduce the number of needed test images in clinical noise pareidolia tests

On Identifying Pareidolia Phenomenon by Emulating Patient Behavior

Zhaohui Zhu^{1,2(⊠)}

Marc A. Kastner²

Shin'ichi Satoh^{2,1}

¹ The University of Tokyo, Tokyo, Japan ² National Institute of Informatics, Tokyo, Japan

For more information, please contact us via email: <u>zhzhu@nii.ac.jp</u>