

Personalized Fashion Recommendation using Pairwise Attention

Donnaphat Trakulwaranont, Marc A. Kastner, Shin'ichi Satoh

■ donnapat.tra@gmail.com

Introduction

 Fashion is one of highest revenue industries, Online fashion shopping has some obstacles: Do not know what is suitable
 Motivation

- However, fashion recommendation systems have various existing problems:
- Lack of personalization
- Low variety in dataset (types of users and recommended clothing)
- We want to make the recommendation system more personalize based on occasion and user's characteristic

Idea

- Use more personal information
 - More Personalized recommendation
- > Form the new recommendation system
 - Recommend more variety clothing types
- Use SFS and Polyvore dataset
 - Low variety in the dataset

Proposed method

Our method can seperate into 2 main stages.

- 1. Recommendation stage
 - It is used for generating recommended clothing item that match to specific user based on their characteristic.
 - The pairwise attention module can generate the weight attention score for each input feature.

Pairwise calculation

$$F = \{f_{season}, f_{occasion}, f_{age}, f_{ethinicity}, f_{body}\}$$

$$W_f = Sigmoid \left(\frac{1}{\left|F\right| - 1} \sum_{x \in F - f} f \otimes x^T\right); \quad where \ f \in F \quad \therefore F_{fusion} = \frac{1}{\left|F\right|} \sum_{f \in F} W_f \otimes f$$

- 2. Query stage
 - Query using output from recommendation model
 - Using GloVe to encode, and Cosine similarity

Results

- The proposed method can provide more personal recommendations and more variety in clothing.
- •The proposed method provides better performance in mAP and mAR.
- •Using a survey, the proposed method is preferred by 58% of participant.

Qualitative Result

Quantitative Result

	Item recommendation				Attribute recommendation			
Model input	mAP@5	mAR@5	mAP@20	mAR@20	mAP@5	mAR@5	mAP@20	mAR@20
VIBE (Comparison method)	0.4859	0.4865	0.7103	0.6108	-	-	-	-
AFF (Naïve)	0.5708	0.5714	0.8165	0.8676	0.7427	0.5701	0.7810	0.4356
Occasion + Season + Age	0.8039	0.8045	0.8773	0.8822	0.7849	0.7854	0.7991	0.7789
Occasion + Season + Age + Ethnicity	0.8279	0.8286	0.8893	0.8900	0.8842	0.6263	0.9459	0.2871
Occasion + Season + Age + Ethnicity + Body shape	0.8311	0.8316	0.8907	0.8905	0.8377	0.8382	0.8188	0.8203

Tbl.1 quantitative results comparisons of the proposed method and comparison method

Questionaire Result

- Number of participants (Ethnicity: Asian)
 - 31 (21 Female, 10 Male)
- Questions
 - 43 queries (Ethniciy: Asian with random occasion, season, age)

Model	Female	Male	SUM	
Comparison (ViBE)	9	4	13 (41.94 %)	
Proposed	12	6	18 (58.06 %)	

Tbl.2 Score for each method chosen by participant