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Viewer sentiment analysis of videos

• Try to find perceptual based clustering of scenes
• Which might differ from genres
• Content-based clustering also avoids annotation bias

• Goals
• Find “funny scenes” “scary scenes” etc.
• Create something like Sentibank for videos
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Motivation

• Applications:
• Video recommendations
• Video retrieval

• Could be improved by being user-centric
• Include viewer sentiment to include perception of a video

• Two videos with the same genre might yield opposite sentiment
• A “related video” recommendation should be perceived the same, not just 

have similar meta-data

3



Related research

• Visual Sentiment
• SentiBank

• Detectors for “funny cat” vs. “cute cat”
• (Mostly) targeting images
• Strong supervision

• Video emotion research
• Does not analyze the viewer but emotion of somebody inside video

• Not directly connected to sentiment: A prank video of somebody laughing might create 
an angry sentiment in viewer.
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Problem: Sentiment annotations

• How to get annotations for viewer sentiment?
• E.g. annotate scenes with “funny” “scary” “sad” …

• No sentiment annotations
• Also not much emotion/sentiment research done with YouTube datasets yet

• Annotation expensive

• Idea: Use user reactions for weak supervision, instead
• Analyze user comments with text sentiment techniques
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Weak supervision
• Use viewer comments to model viewer sentiment
• E.g. sad comments => sad sentiment

• Happy comments => happy sentiment
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Weak supervision

• Crawl YouTube dataset
• Get comments through API
• Analyze text sentiment
• Determine sentiment label for video
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Text sentiment analysis

• Two dictionaries for word sentiment:
• NRC Word-Emotion Association Lexicon [1] (EmoLex)

• 14,182 English words with annotations for 10 classes
• Emotions: 

Anger, Anticipation, Disgust, Fear, Joy, Sadness, Surprise, Trust
• Sentiment: 

Positive, Negative

• NRC Valence, Arousal, Dominance Lexicon [2]
• 20,007 English words with granular scores between [0,1]

• Both dictionaries provide machine-translated 
multi-language annotations
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(a) Pie chart of emotion labels. The emotion labels selected
through majority decision after a comment sentiment analysis. 

(b) VAD space of the data. Each data point represents a video. 
The color reflects different emotions set through a majority decision. 

Dataset

• Crawled approx. 100 comments 
each for 34,518 YT videos
• Analyzed all comments with word 

sentiment lexicons
• Word-Emotion: Majority vote
• VAD scores: Average over all 

words/comments

• Finding:
• SNS data very noisy
• For majority of videos no easy 

majority decision

• But quite some videos actually can 
get a majority decision!
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(a) Pie chart of emotion labels. The emotion labels selected
through majority decision after a comment sentiment analysis. 

(b) VAD space of the data. Each data point represents a video. 
The color reflects different emotions set through a majority decision. 



(a) Pie chart of emotion labels. The emotion labels selected
through majority decision after a comment sentiment analysis. 

(b) VAD space of the data. Each data point represents a video. 
The color reflects different emotions set through a majority decision. 

Adding new emotion labels

• “Mixed”:
• Comments have no clear emotion attached
• Three or more trends in comments make it

hard to do a “majority decision”

• “Conflicting”:
• There are opposite trends
• For example, half of comments “sad” and half of comments “happy”
• Detecting conflicting trends might be interesting for news videos

• For the evaluations
• For now, ignore ”mixed” emotion videos
• Analyze videos with clear emotion or conflicting emotion
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Model

• Train audio-visual features to classify the viewer sentiment 
annotations retrieved by weak supervision
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Preliminary experiment

• Train Random Forest on video-level features
• Visual: Inception-V3 pre-trained on ImageNet
• Audio: VGG-inspired audio model

• Experiments
• Regress V/A/D

• Trained separately towards V-A-D scores in the interval of [0,100]
• Classify emotion

• 12 classes: Anger, Anticipation, Disgust, Fear, Joy, Sadness, Surprise, Trust, Conflicting_* (x4)

• Dataset
• Training: 12,302 videos
• Testing: 3,076 videos
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Experiments: VAD (Left)  / Emotion (Right)

Features MAE Correlation

Visual 3.19 0.57

Audio 3.06 0.59

Both 2.96 0.63
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Features MAE Correlation

Visual 2.13 0.47

Audio 2.06 0.52

Both 2.04 0.54

Features MAE Correlation

Visual 2.06 0.30

Audio 2.03 0.34

Both 2.02 0.36
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(For interval [0, 100])

Avg. Precision Avg. Recall Avg. F1 Score

Visual 0.45 0.48 0.38

Audio 0.44 0.51 0.43

Both 0.43 0.50 0.40
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Considerations

• Weak supervised labels
• Need to be evaluated
• Compare to small-scale crowd-sourced annotation?

• VAD
• Seems to work quite well actually despite naïve model

• Emotion
• Very imbalanced and noisy
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Currently running… (Future work)

• Improve model
• Fuse with features from visual sentiment analysis + audio mood

• Loss function idea: Use a triplet loss
• In triplet loss, usually the idea is to give “easily mistaken” negative samples
• Use training mechanism focusing on “conflicting” labels for this
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Currently investigating… (Future work)

• Multi-modal weak supervision for violence detection[1]
• They use weak supervision of large video data from YouTube

• From: Video-level annotations -> 6 violence classes
• To: Frame-level detection of violence

• A similar approach could work for emotion classes

• Try Bayesian Network[2]
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Conclusion

• Creating an audiovisual -> video sentiment model for SNS content
• Using user comments as weak supervision

• Performance of VAD regression shows promising results even for naïve model
• More data and better features should give good performance

• Weak supervision might need crowd-sourced evaluation
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