On the quantification of the mental image of visual concepts for multi-modal applications

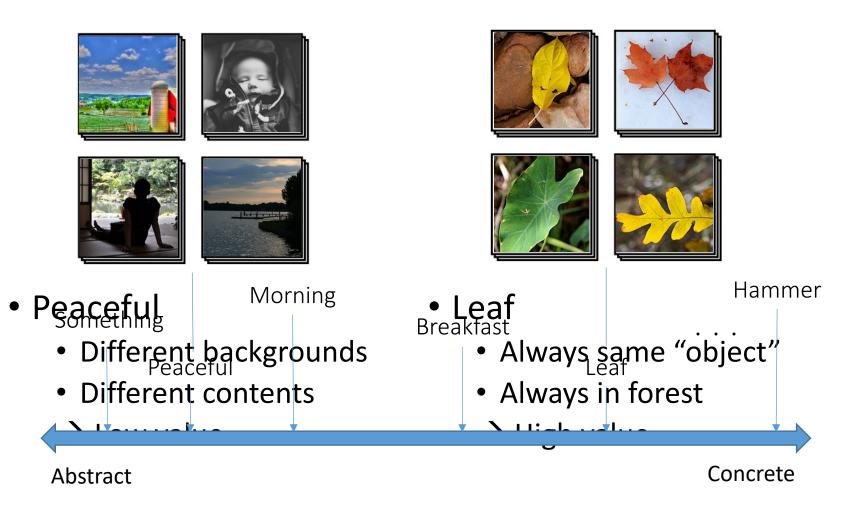
Marc A. Kastner¹, Ichiro Ide², Yasutomo Kawanishi², Takatsugu Hirayama², Daisuke Deguchi², Hiroshi Murase²

(1) National Institute of Informatics (2) Nagoya University Presentation #5 - CVIM-222 / May 14, 2020

About me

- Marc A. Kastner (30), German
- Research interest
 - Language and vision
 - Computational psycholinguistics
 - Emotion and sentiment
- Education and Work
 - TU Braunschweig, Germany
 - 2010 2016: B.Sc. and M.Sc.
 - Nagoya University, Japan
 - 2013 2014: Student exchange
 - 2016 2020: Ph.D.
 - National Institute of Informatics, Japan
 - 2019: Internship
 - 2020 now: Post-doc
 - With Prof. Shin'ichi Satoh

Mental image of concepts



Research motivation

- Mental imagery
 - "Visual experience of a concept [...] from memory"
 - In this context, the *common* perception across society
- Imagine two concepts like "peaceful" and "leaf"
 - Are they equally hard to visually imagine?
 - Which is more abstract or more concrete?
- Goals
 - Modeling the quantization of a mental image of a concept

Example applications

- Visual diversification [1]
 - Increase variety of image retrieval results
- Multi-modal approaches using text + image [2]
 - Analyzing relationship of slogan and image for advertisements
- Language processing [3]
 - Can help when learning translations in machine translation models

1: Reinier H. van Leuken et al. Visual diversification of image search results. WWW 2009.

2: Zhang et al. Equal But Not The Same: Understanding the implicit relationship between persuasive images and text. BMVC 2018.3: Hewitt et al. Learning translations via images with a massively multilingual image dataset. ACL 2018.

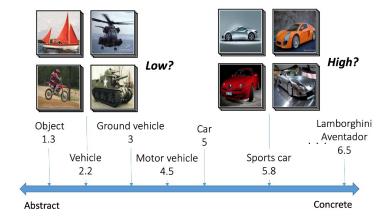
(a) Tiger print mammal

Core idea

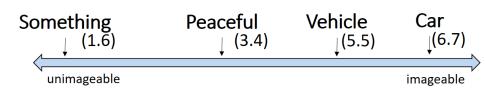
- Assumption
 - Images on the Web somewhat reflect the *common* mental image members of our society have of a concept
 - E.g. if crawling many images of *leaf*, we get a reasonable average mental image of *leaf*
- Possible approaches
 - Relative measurement: Estimate relative perception differences of similar words
 → Research 1
 - Absolute measurement: Estimate absolute values for arbitrary concepts
 → Research 2

Research Target

Research 1



- Estimate visual variety of concepts within same domain
 - Relative measurement
 - For direct comparison, relative to another
 - E.g. Sports car <-> Car <-> Airplane <-> Vehicle
- **Data-driven** approach creating ideal datasets for the measurement
- Usable for word selection problems
 - But, hard to quantify Vehicle <-> Pizza because of missing reference point



Research Target

Research 2

- Estimate **imageability of words** on a dictionary level
 - Absolute measurement
 - For global trend of abstract vs. concrete
 - E.g. Random <-> Peace <-> Airplane <-> Pizza
- Algorithm-driven approach using supervised learning
- Usable for text difficulty, abstractness of text, etc.
 - But, scale not granular enough to be used for Sports Car <-> Car

My first Japanese talk at CVIM two years ago!

カストナーマークアウレル,井手一郎,川西康友,平山高嗣,出口大輔,村瀬洋, Web画像の分布に基づく単語概念の視覚的な多様性の推定.CVIM 2018.03

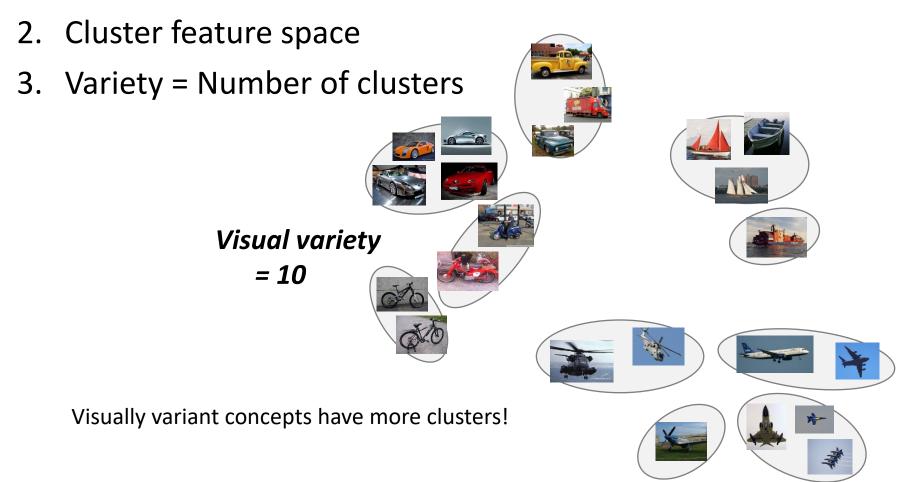
Research 1

Estimation of visual variety of concepts

Target: Relative measurements in same domain

Core approach

1. Extract visual features of images (Bag-of-Words)



Research 1: Local visual variety of words on domain-level

• Naïve:

Biased data

- Extract visual features
- Cluster the visual feature space

 \rightarrow The number of clusters express variety!

- Looking closer at datasets like ImageNet[6]
 - Very biased composition
 - Vehicle largely consists of military vehicles
 - Does not reflect reality!
- We need to create a *"proper"* dataset!

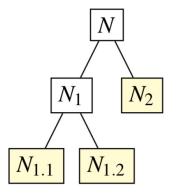
6: J.D.J. Deng et al. ImageNet: A large-scale hierarchical image database. CVPR 2009.

Ideal dataset

- Of course, a mental image is very subjective...
- But in general, the dataset composition should probably reflect the distribution in real life:
 - Rare sub-concepts → Few images (For *vehicles*, few *tanks*)
 - Common sub-concepts → Many images (For vehicles, many cars)
- Recreate datasets based on this idea!
 - Compose abstract concepts' datasets using images of their sub-concepts reflecting "natural" distribution

Dataset creation

 Recompose dataset N' from subconcept images p using Web popularity weighting w



 $N' = w_1 p(N_{1.1}) + w_2 p(N_{1.2}) + w_3 p(N_2)$

Popularity weighting

Idea:

- Retrievable with Google API
 - Number of search results for a term
 - Separate API and results for *Google Text* and *Google Image*
- Use this to decide ratio for dataset composition

Dataset creation (2)

	Google Image	
	Results	
sports car	27.4%	
racer	9.2%	
Model T	8.8%	
coupe	6.9%	
used-car	6.7%	
jeep	5.0%	
beach w.	4.8%	
compact	4.5%	
cab	3.9%	
convertible	3.5%	
hatchback	2.7%	
minivan	1.3%	
ambulance	1.4%	

Pictures of: Jeep

n03594945 571

n03594945 642

n03594945 655

n03594945 681

n03594945 708

n04285008_423

n04285008_376 n04285008 390

...

n04285008_434

...

Pictures of: Sports car

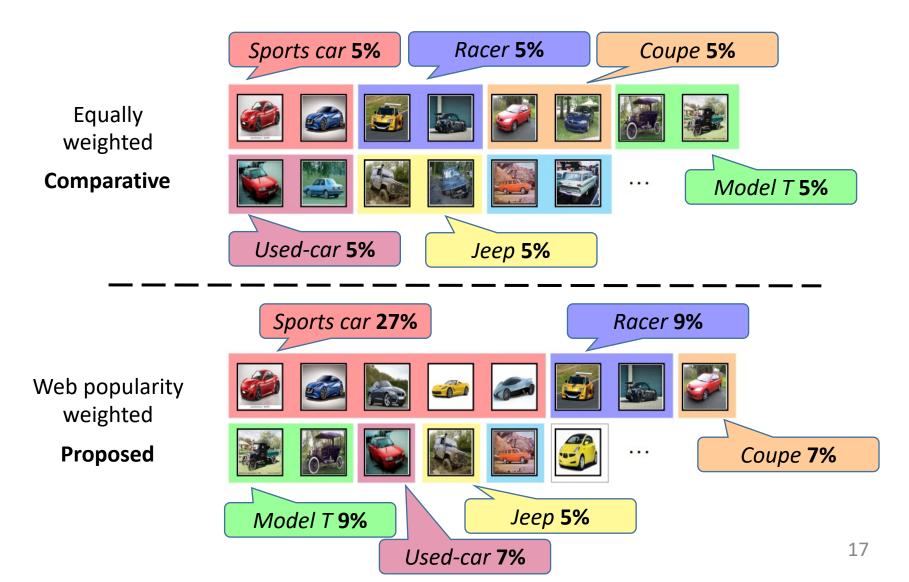
n04285008 476 n04285008 497

Re-composited dataset for car

Experiment

- Implementation
 - Visual features: Bag-of-Visual-Words (SURF)
 - Clustering: Mean-Shift
 - Results \rightarrow Normalized number of clusters
- Ground-truth
 - Through crowdsourced survey: 4,529 pair comparisons [7] from 158 people via social media
- Evaluation metrics
 - Spearman's Rank Correlation
 - Mean Squared Error (MSE)

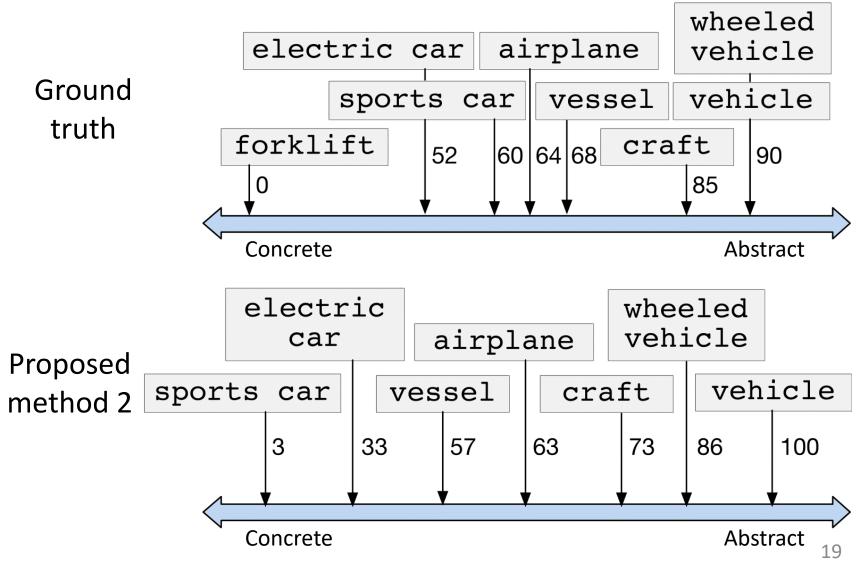
Dataset for car (Example)



Results

Dataset	Rank correlation	Mean Squared Error (MSE)
Baseline (Original ImageNet)	0.25	10.54
Comparative (Re-compose with equal weighting)	0.62	9.23
Proposed 1 (Re-composed with Google Text weighting)	0.56	14.89
Proposed 2 (Re-composed with Google Image weighting)	0.73	9.01

- Baseline does not correlate at all
- Proposed method 2 improves correlation by 192% over the baseline and 17.7% over the comparative method.



Summary

- Analyzing local visual variety differences of words within the same domain
 - Using a dataset-driven approach to estimate human perception of visual concepts
 - Established ground-truth results with a crowd-sourced survey (n = 158)
- Proposed method improves correlation by 192% over the baseline and 17.7% over the comparative method

Research 2

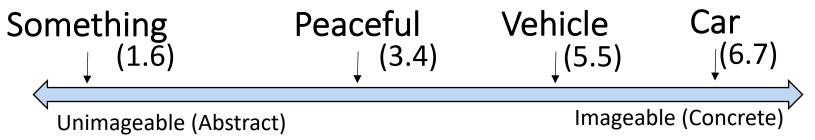
Estimation of word imageability

<u>Target:</u> Absolute measurements on dictionary-level

Research 2: Imageability of words on dictionary-level

心像性 Imageability of words

- Concept from Psycholinguistics [1]
 - Quantize the perception of words
 - Often described on Likert scales
 - Unimageable <-> Imageable or Abstract <-> Concrete
 - Is a concept imageable? Do you have a mental image when thinking of a concept?



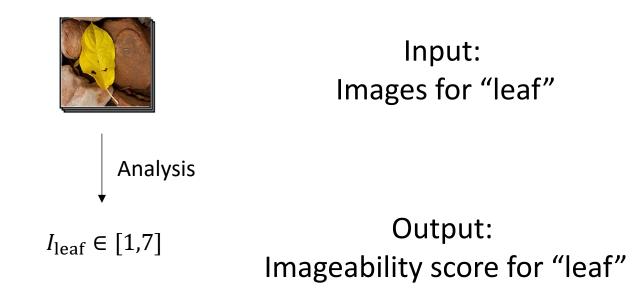
1: Pavio et al. Concreteness, imagery, and meaningfulness values for 925 nouns. J Exp Psych 1968.

Motivation

- While there are existing imageability dictionaries
 - Datasets are small (< 6000 words)
 - Most dictionaries are created by hand
 - Extension is very labor intensive
 - Data often republished or reshuffled, but rarely increased
- Idea: Estimate imageability scores to extend existing dictionaries by analyzing visual data
 - Use core assumption of research 1
 - Train a model for imageability estimation

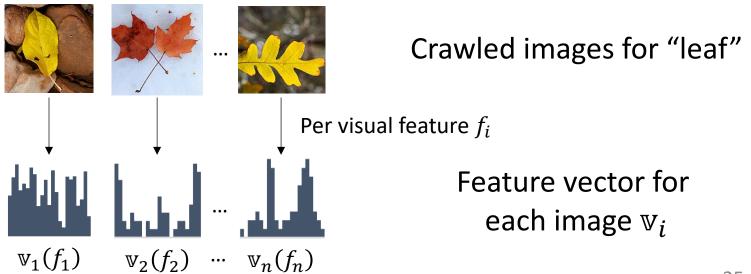
Purpose

- Estimate an imageability score for a word based on its visual characteristics
 - Analyze images crawled for each word
 - Train regression model to estimate the score based on visual features



Approach Extracting visual features

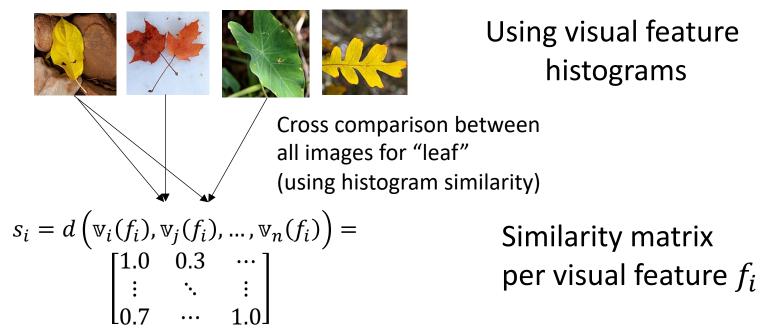
- For each word, crawl image data from social media
- Then, extract visual features from each image
 - E.g. Color histograms, Bag-of-Visual-Words histograms, ...



Approach

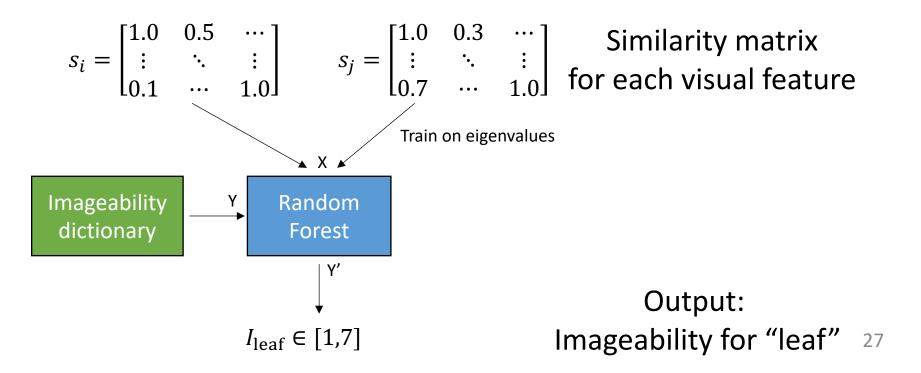
Cross comparison of images

- Cross-compare all images of same word
- Create similarity matrix containing similarity between all image pairs

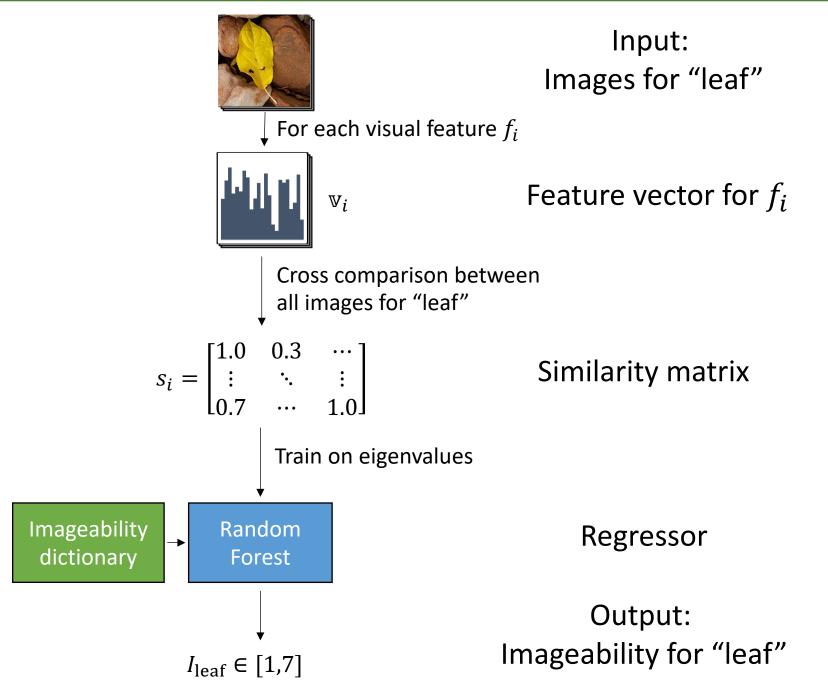


Approach Regression model

- Random forest based on visual characteristics
 - Train model on eigenvalues of similarity matrix
 - Use imageability dictionary as ground-truth



Research 2: Imageability of words on dictionary-level



28

Visual features

- Low-level (Traditional computer vision)
- 1. Color histogram (HSV)
- 2. Bag-of-Visual-Words (SURF)
- 3. GIST descriptors
- High-level (YOLO-based)
- 1. Image theme (e.g. Indoor, Architecture, Park, ...)
- 2. Image content (e.g. 2 people, 1 dog, 2 signs, ..)
- 3. Image composition (e.g. 3 objects in edges, 1 in center)

Experiment

- Objective: Predict *imageability* for a set of words
- Using dataset of 587 words and 5,000 images each
 - Ground truth -> Imageability dictionary [8, 9]
 - Images -> YFC100M [10]
- Evaluation metrics
 - Pearson Correlation
 - Mean Absolute Error (MAE)
- Methods:
 - Proposed: Visual data mining
 - Comparative: Text data mining [11]

8: Cortese et al. Imageability ratings for 3,000 monosyllabic words. Behav Res Method 2004.

9: Reilly et al. Formal distinctiveness of high- and low-imageability nouns: analyses and theoretical implications. Cogn Sci 2007.

10: Thomee et al. YFCC100M: The new data in multimedia research. CACM 2016.

11: N. Ljubesic et al. Predicting concreteness and imageability of words within and across languages via word embeddings. 3rd Workshop on Representation Learning for NLP 2018.

Evaluation: Results

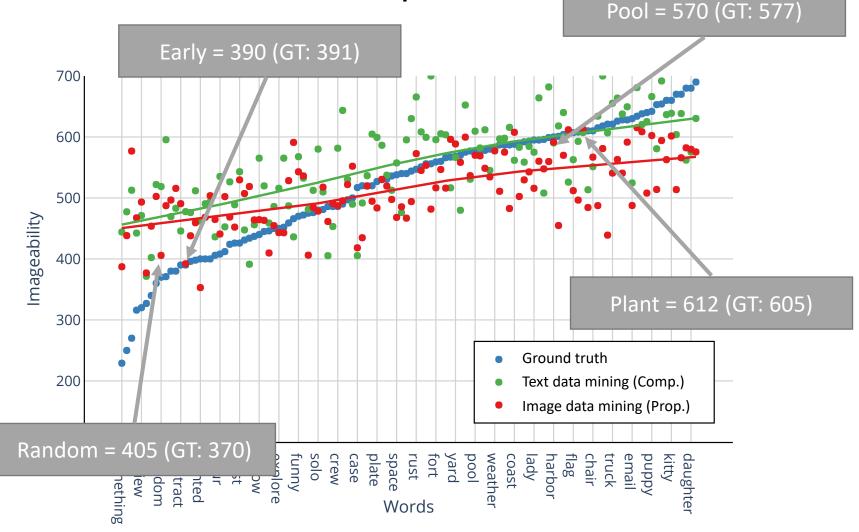
• Estimating imageability for test data

Feature	Correlation	MAE
Combined (Low)	0.60	11.03
Combined (High)	0.61	10.18
Combined (All)	0.63	10.14
Comparative (Text data mining [8])	0.70	10.39

• Splitting test-data in abstract vs. concrete words

Feature	Abstract only		Concrete only	
	Corr.	MAE	Corr.	MAE
Combined (Low)	0.32	10.90	0.16	11.37
Combined (High)	0.27	11.31	0.10	9.10
Combined (All)	0.26	10.79	0.17	10.11

Evaluation: Examples



Summary

- Proposed a method to estimate the imageability of words on dictionary level
 - By analyzing the visual characteristics of Web-crawled images from social media
- Estimated imageability with an error of 10.14% and a correlation of 0.63
 - Results are similar to solely text-based approaches, but fusing both might further improve results towards better correlation

Research summary

• During my doctoral studies, I quantized the perception and mental image of visual concepts

Research 1

- Local visual variety on the same domain
 - Verified a high correlation on 21 terms related to vehicles
 - Sports car <-> Car <-> Ground vehicle <-> Vehicle

Research 2

- Global imageability on dictionary-level
 - Low error and good correlation for a dataset with 587 words
 - Interesting results when playing with low-level vs. high-level features for abstract vs. concrete words.

Summary of my Doctoral studies

- Proposed idea of using visual variety for mental image modeling
- Main assumption: Connection between mental image and Web-crawled image sets
 - Verified by results of both Research 1 and 2
 - Image sets can be used to both replicate and augment results from Psycholinguistics
- Different visual characteristics contribute to mental image of different concepts

Publications during Ph.D.

Journal

- **1. M.A. Kastner**, I. Ide, F. Nack, Y. Kawanishi, T. Hirayama, D. Deguchi, H. Murase, Estimating the imageability of words by mining visual characteristics from crawled image data. MTAP 2020.
- 2. M.A. Kastner, I. Ide, Y. Kawanishi, T. Hirayama, D. Deguchi, H. Murase, Estimating the visual variety of concepts by referring to Web popularity. MTAP 2019.

International conferences

- 1. C. Matsuhira, **M.A. Kastner,** I. Ide, Y. Kawanishi, T. Hirayama, D. Deguchi, K. Doman, H.Murase, Imageability estimation using visual and language features. ICMR 2020. (Accepted for publication in October 2020.)
- 2. M.A. Kastner, I. Ide, Y. Kawanishi, T. Hirayama, D. Deguchi, H. Murase, Browsing visual sentiment datasets using Psycholinguistic Groundings. MMM 2020.
- **3. M.A. Kastner**, On quantizing the mental image of concepts for visual semantic analyses. ACMMM 2019 Doctoral Symposium.

Domestic conferences

- 1. M.A. Kastner, I. Ide, Y. Kawanishi, T. Hirayama, D. Deguchi, H. Murase, On the Quantification of the Mental Image of Visual Concepts for Multi-modal Applications. CVIM 2020.05 Presentation.
- 2. 松平茅集, カストナーマークアウレル, 井手一郎, 川西康友, 平山高嗣, 道満恵介, 出口大輔, 村瀬洋, 視覚特徴 と言語特徴を用いた単語の心像性推定の検討. ANLP 2020 Poster.
- 3. 梅村和紀, カストナーマークアウレル, 井手一郎, 川西康友, 平山高嗣, 道満恵介, 出口大輔, 村瀬洋, 心像性に 基づく画像キャプショニングの検討. MVE 2020 (MVE賞受賞).
- 4. M.A. Kastner, I. Ide, Y. Kawanishi, T. Hirayama, D. Deguchi, H. Murase, On visualizing psycholinguistic groundings for sentiment image datasets. MIRU 2019 Demonstration.
- 5. M.A. Kastner, I. Ide, Y. Kawanishi, T. Hirayama, D. Deguchi, H. Murase, A preliminary study on estimating word imageability labels using Web image data mining. ANLP 2019 Presentation.
- 6. 梅村和紀, **カストナーマークアウレル,** 井手一郎, 川西康友, 平山高嗣, 道満恵介, 出口大輔, 村瀬洋, 画像キャ プションの質的評価に向けた文の心像性推定手法の検討. ANLP 2019 Presentation.
- 7. M.A. Kastner, I. Ide, Y. Kawanishi, T. Hirayama, D. Deguchi, H. Murase, On understanding visual relationships of concepts by visualizing bag-of-visual-words models. MIRU 2018 Poster.
- 8. M.A. Kastner, Y. Tsuchiya, K. Osumi, R. Akiyama, L. Kawai, H. Ikeda, A Survey on Psychology Connecting Perception, Language, and Memory studies with Computer Vision. MIRU 2018 Wakate Poster + Presentation.
- **9. カストナーマークアウレル**, 井手一郎, 川西康友, 平山高嗣, 出口大輔, 村瀬洋, Web画像の分布に基づく単語 概念の視覚的な多様性の推定. CVIM 2018.03 Poster + Presentation.

Thank you for your attention!

Questions?

