DS-03

On Quantizing the Mental Image of Concepts for Visual Semantic Analyses

https://www.marc-kastner.com/

Background

Semantic gap problems

- Missing information between computer representation and human perception
- Often an issue in word choice problems and resulting in *unnatural* results

Psycholinguistics looks at perception of words^[1]

Marc A. Kastner (Nagoya University)

• Up to nine different measures per word ...

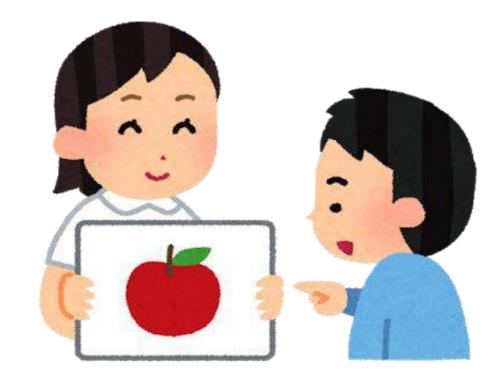
Core ideas

Try to quantize semantic gap before solving it

⊠ kastnerm@murase.is.i.nagoya-u.ac.jp

- Use visual data mining to estimate variety
 - differences across different datasets
- Estimate perception of concepts without manual labor needed

Applications



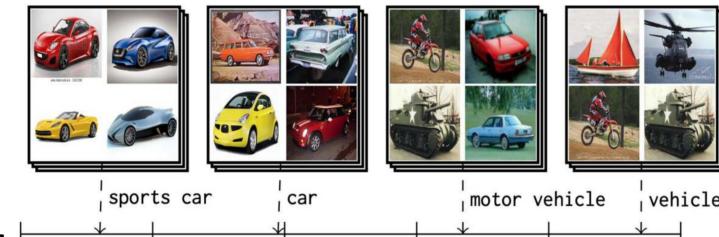
• ... but dataset creation is manual and labor intensive

In my doctoral studies I use the mental image of concepts for multimedia modeling.

Visual variety (Topic 1)

Idea: Data mine visual features to quantize feature variety across related words

 E.g. Compare variety of car vs. sports car



- Analyses quickly showed isports car icar
 bias in existing datasets^[2]
 Concrete
- Proposed method: Improve dataset by recomposing existing datasets^[2]
- Create hypernym datasets by

- Word choice problems like retrieval or tagging
- Increase vocabulary of psycholinguistics dictionaries

Imageability (Topic 2)

Idea: Apply idea of visual variety on the concept of Imageability

- Concept coming from Psycholinguistics^[1]
- Score words from 1 (unimageable) to 7 (imageable)

Regress imageability scores for words using visual data analysis similar to visual variety

Proposed method: Gain visual information from mixture of low- and high-level features

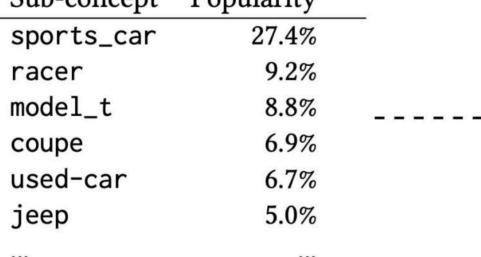
• Low: Patterns, Shapes, Colors

combining its hyponyms

- Use *popularity* measure to determine ratio
- Popularity: #results for Google Image Search
- Lastly, cluster visual features across datasets using Mean-Shift
- Re-composition removes bias!

Corpus	Correlation MSE	
	(1 = best)	(0 = best)
Plain ImageNet (Baseline)	0.25	10.54
Equal weighting (Comparative)	0.62	9.23
Popularity weighting (Proposed)	0.73	9.01

	sports_ca	ar racer	model_t
14.57			1
Sub-con	cept Popu	larity	



- High: Objects, Concepts
- Train network based on these

Datasets

- 586 words with groundtruth imageability scores^[3]
- 5,000 images per word crawled from Flickr^[4]

Feature	Correlation	MAE
	(1 = best)	(0 = best)
L1: Color histograms	0.53	11.30
L2: SURF + Bag of Words	0.54	11.48
L3: GIST	0.42	12.05
H1: Image theme (YFCC100M-based)	0.62	10.19
H2: Image content (YOLO-based)	0.43	12.55
H3: Image composition (YOLO-based)	0.25	13.98
Combined (Proposed method)	0.63	10.14
Local visual variety approach [3]	-0.01	67.31

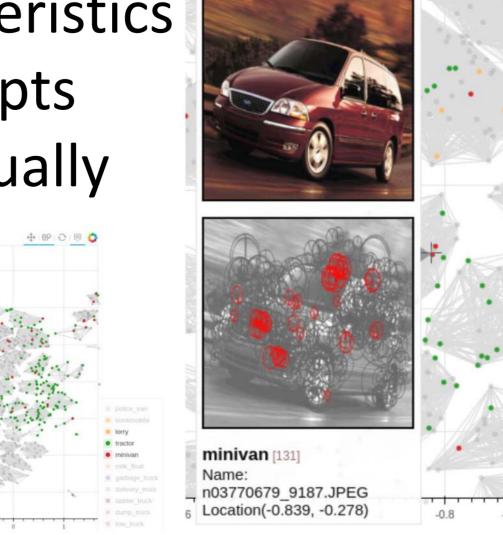
	<i>n</i> images for a term <i>x</i>
¦ Vis ↓	sual feature extraction
	Histogram
¦ Cr	oss comparison within image set
1.0 0.7 ··. 0.3 1.0	Similarity matrix
¦ ↓ Set	t of top eigenvalues
Regressor	Regression of imageability
¦ t ∈ [100, 700]	Output: Imageability for <i>x</i>

Visualizations (Topic 3)

Side projects to visualize datasets in Topics 1 & 2

Visualize BoVW models across related concepts

- Highlight shared visual characteristics across images of related concepts
- Find out which region, e.g., visually "makes a truck a truck"



Browsing Visual Sentiment Datasets using Psycholinguistic Groundings^[5]

- Show relationship between psycholinguistics features in textual annotations
 - and sentiment annotations
- Use text to calculate per-image sentiment ratings

ord cloud: I'massive', building, 'terrorist', 'dropped', 'strik ms', 'nation', 'children', 'people', 'second', 'city', 'presiden photo', 'killed', 'attack', 'truck', 'bomb', 'used', 'close', 'car', 'many', 'soil']

[1] Paivio et al. Concreteness, imageability, and meaningfulness values for 925 nouns. Behav Res Meth 1968
 [4] Thomee et al. YFCC100M: The New Data in Multimedia Research. Commun ACM 2016
 [2] Deng et al. ImageNet: A Large-Scale Hierarchical Image Database. CVPR 2009
 [5] Kastner et al. Browsing Visual Sentiment Datasets using Psycholinguistic Groundings. MMM 2020
 [3] Cortese. Imageability ratings for 3,000 monosyllabic words. Behav Res Meth 2004