

Newly established field "Explainable Al"¹ asks for more understanding of machine learned results

- Idea: Visualize similarities across related concepts
 - Show similar image regions
 - Show visual-spatial distribution of images

Highlight keypoints

$g(x) = \frac{\prod_{i=0}^{n} (f_i(x) + 1)}{\prod_{i=0}^{n} (f_i(x) + 1)}$

Find common keypoints

- Extracting BoW histogram f(x) for each image
- Combine images of local cluster to histogram g(x)
- For each image, intersect g(x) with the histogram of 3. each SURF keypoint to find visually similar keypoints in each image.

Local cluster with image *i*

444

SURF <u>Keypoints</u> from image *i*

Matching: Low

- Interesting findings: Sometimes very unexpected image regions are most relevant for the classifiers
- Reconstruct Bag-of-Visual-Words models³
 - Identify which features are retained in a visual model
 - Highlights which regions were crucial for encoding

Visualization tool

- Visualize the visual model using UMAP⁴ and Bokeh⁵
- BoVW histogram decides location of each sample
- Highlight images based on sub-concept
- Visually narrow sub-concepts are clustered in a corner

Discussion

- Find visually-related groups even if they belong to different concepts
- In "street vehicles", "trucks with company logos" are clustered close to "cars with text" due to text patterns

Importance of backgrounds

In "vehicles", "helicopters" are clustered close to "airplanes" due to similar features in sky and clouds

- Visually open sub-concepts are spatially scattered
 - Labeling can be set to children nodes or sibling sub-trees
 - Mouse-over shows extended information on data samples
 - Raw image, sub-concept name, imageability labels (if available)
 - Bottom image highlights SURF keypoints visually common between neighboring images
- Tool is designed to browse ImageNet concepts based on visual characteristics in sub-concepts

Future work

minivan [131]

n03770679 9187.JPEC

Spatial clustering finds visual semantics in a unsupervised way

Correlate visual feature space to visual variety

- Compare results to imageability and concreteness
- Infer imageability from area of visual feature space
- Cross comparison of ImageNet subtrees Compare variety in car

types to variety of plants

Create live demo for interactive browsing

• If possible, publically

available though Web app

[1] W. Samek et al. Explainable artificial intelligence: understanding, visualizing and interpreting deep learning models. arXiv 2017 [2] C. Hentschel and H. Sack. What image classifiers really see – visualizing bag-of-visual words models. MMM 2015 [3] H. Yue et al. Visualizing bag-of-words for high-resolution remote sensing image classification. J Appl Remote Sens 2016 [4] L. McInnes and J. Healy. UMAP: Uniform Manifold Approximation and Projection for dimension reduction. arXiv 2018 [5] Bokeh development team. Bokeh: Python library for interactive visualization. 2014

